Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.1 - Arc Length - 8.1 Exercises - Page 549: 19

Answer

The exact length of the curve $$ y=\ln(1-x^{2}), \quad\quad 0 \leq x \leq \frac{1}{2}. $$ is equal to $ (\ln 3-\frac{1}{2}). $

Work Step by Step

$$ y=\ln(1-x^{2}), \quad\quad 0 \leq x \leq \frac{1}{2}. $$ We have $$ y=\ln(1-x^{2}) \Rightarrow d y/ d x=\frac{1}{1-x^{2}}. (-2x) $$ $$ \begin{aligned} 1+\left(\frac{d y}{d x}\right)^{2} &=1+\frac{4 x^{2}}{\left(1-x^{2}\right)^{2}} \\ &=\frac{1-2 x^{2}+x^{4}+4 x^{2}}{\left(1-x^{2}\right)^{2}}\\ &=\frac{1+2 x^{2}+x^{4}}{\left(1-x^{2}\right)^{2}}\\ &=\frac{\left(1+x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}} \end{aligned} $$ $ \Rightarrow $ $$ \begin{aligned} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}& =\sqrt{\left(\frac{1+x^{2}}{1-x^{2}}\right)^{2}} \\ &=\frac{1+x^{2}}{1-x^{2}}\\ & \quad\left[ \text{ by long division } \right]\\ &=-1+\frac{2}{1-x^{2}}\\ & \quad\left[ \text{ its partial fractions are } \right]\\ &=-1+\frac{1}{1+x}+\frac{1}{1-x} \end{aligned} $$ So the arc length is $$ \begin{aligned} L &=\int_{0}^{1 / 2}\left(-1+\frac{1}{1+x}+\frac{1}{1-x}\right) d x \\ &=[-x+\ln |1+x|-\ln |1-x|]_{0}^{1 / 2} \\ &=\left(-\frac{1}{2}+\ln \frac{3}{2}-\ln \frac{1}{2}\right)-0 \\ &=\ln 3-\frac{1}{2} \end{aligned} $$ Hence, the exact length of the curve $$ y=\ln(1-x^{2}), \quad\quad 0 \leq x \leq \frac{1}{2}. $$ is equal to $ (\ln 3-\frac{1}{2}). $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.