Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 419: 58

Answer

$\frac{4\sqrt{3}}{3}$

Work Step by Step

$\int_{\pi/3}^{2\pi/3}csc^2~(\frac{1}{2}t)~dt$ Let $u = \frac{cos~(\frac{1}{2}t)}{sin~(\frac{1}{2}t)}$ $\frac{du}{dt} = \frac{-\frac{1}{2}sin^2~(\frac{1}{2}t)-\frac{1}{2}cos^2~(\frac{1}{2}t)}{sin^2~(\frac{1}{2}t)} = \frac{-\frac{1}{2}~[sin^2~(\frac{1}{2}t)+cos^2~(\frac{1}{2}t)~]}{sin^2~(\frac{1}{2}t)} = -\frac{1}{2}csc^2~(\frac{1}{2}t)$ $dt = -\frac{2~du}{csc^2(\frac{1}{2}t)}$ When $t = \frac{\pi}{3}$, then $u = \sqrt{3}$ When $t = \frac{2\pi}{3}$, then $u = \frac{\sqrt{3}}{3}$ $\int_{\sqrt{3}}^{\sqrt{3}/3} [csc^2~(\frac{1}{2}t)]\cdot [-\frac{2~du}{csc^2(\frac{1}{2}t)}]$ $= \int_{\sqrt{3}}^{\sqrt{3}/3} -2~du$ $= \int_{\sqrt{3}/3}^{\sqrt{3}} 2~du$ $= 2u~\vert_{\sqrt{3}/3}^{\sqrt{3}}$ $= 2\sqrt{3}-2{\frac{\sqrt{3}}{3}}$ $= \frac{6\sqrt{3}}{3}-{\frac{2\sqrt{3}}{3}}$ $= \frac{4\sqrt{3}}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.