Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 47

Answer

The exact length of the polar curve: $$ r=\theta^{2} \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ & =\frac{8}{3}\left[\left(\pi^{2}+1\right)^{3 / 2}-1\right]\end{aligned} $$

Work Step by Step

The exact length of the polar curve: $$ r=\theta^{2} \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ &=\int_{0}^{2 \pi} \sqrt{\left(\theta^{2}\right)^{2}+(2 \theta)^{2}} d \theta \\ &=\int_{0}^{2 \pi} \sqrt{\theta^{4}+4 \theta^{2}} d \theta \\ &=\int_{0}^{2 \pi} \sqrt{\theta^{2}\left(\theta^{2}+4\right)} d \theta \\ &= \int_{0}^{2 \pi} \theta \sqrt{\theta^{2}+4} d \theta \end{aligned} $$ Now let $ u=\theta^{2}+4$, so that $$ du=2 \theta d \theta \quad \quad [\theta d\theta=\frac{1}{2}du] $$ and $$ \begin{aligned} \int_{0}^{2 \pi} \theta \sqrt{\theta^{2}+4} d \theta &=\int_{4}^{4 \pi^{2}+4} \frac{1}{2} \sqrt{u} d u \\ &=\frac{1}{2} \cdot \frac{2}{3}\left[u^{3 / 2}\right]_{4}^{4\left(\pi^{2}+1\right)} \\ & =\frac{1}{3}\left[4^{3 / 2}\left(\pi^{2}+1\right)^{3 / 2}-4^{3 / 2}\right] \\ & =\frac{8}{3}\left[\left(\pi^{2}+1\right)^{3 / 2}-1\right] \end{aligned}. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.