Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.8 Improper Integrals - 7.8 Exercises - Page 578: 21

Answer

\[\frac{\pi }{4}\]

Work Step by Step

\[\begin{gathered} \int_0^\infty {\frac{{{e^u}}}{{{e^{2u}} + 1}}} \,\,du \hfill \\ \hfill \\ set \hfill \\ v = {e^u}\,\,\,\,\,then\,\,\,\,\,dv = {e^u}du \hfill \\ therefore \hfill \\ \hfill \\ \int_{}^{} {\frac{{{e^u}}}{{{e^{2u}} + 1}}du} = \,\int_{}^{} {\frac{{dv}}{{{v^2} + 1}}} \hfill \\ \hfill \\ {\text{integrate}} \hfill \\ \hfill \\ = {\tan ^{ - 1}}v + C\, \hfill \\ \hfill \\ substitute\,\,back \hfill \\ \hfill \\ \, = {\tan ^{ - 1}}{e^u} + C \hfill \\ \hfill \\ use\,\,Definition\,\,of\,\,improper\,\,integral\,\, \hfill \\ \int_a^\infty {f\,\left( x \right)} \,dx = \,\,\,\,\,\mathop {\,\lim }\limits_{b \to \infty } \int_0^b {f\,\left( x \right)dx} \hfill \\ \hfill \\ \int_0^\infty {\frac{{{e^u}}}{{{e^{2u}} + 1}}} \,\,du\,\, = \,\,\,\mathop {\,\lim }\limits_{b \to \infty } \int_0^b {\frac{{{e^u}}}{{{e^{2u}} + 1}}\,du} \hfill \\ \hfill \\ \operatorname{int} egrate \hfill \\ \hfill \\ = \,\mathop {\,\lim }\limits_{b \to \infty } \,\left( {{{\tan }^{ - 1}}{e^u}} \right)_0^b \hfill \\ \hfill \\ use\,\,the\,\,ftc \hfill \\ \hfill \\ = \left( {{{\tan }^{ - 1}}{e^b} - {{\tan }^{ - 1}}1\,} \right) \hfill \\ \hfill \\ evaluate \hfill \\ \hfill \\ = \frac{\pi }{2} - \frac{\pi }{4} = \frac{\pi }{4} \hfill \\ \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.