Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.8 Improper Integrals - 7.8 Exercises - Page 578: 15

Answer

$$\frac{1}{{\left( {p - 1} \right){2^{p - 1}}}}$$

Work Step by Step

$$\eqalign{ & \int_{{e^2}}^\infty {\frac{{dx}}{{x{{\ln }^p}x}}} \cr & {\text{definition of improper integral}} \cr & \int_{{e^2}}^\infty {\frac{{dx}}{{x{{\ln }^p}x}}} = \mathop {\lim }\limits_{b \to \infty } \int_{{e^2}}^b {\frac{{dx}}{{x{{\ln }^p}x}}} \cr & = \mathop {\lim }\limits_{b \to \infty } \int_{{e^2}}^b {\frac{{dx}}{{x{{\ln }^p}x}}} \cr & = \mathop {\lim }\limits_{b \to \infty } \int_{{e^2}}^b {{{\left( {\ln x} \right)}^{ - p}}\left( {\frac{1}{x}} \right)dx} \cr & {\text{evaluate the integral}} \cr & = \mathop {\lim }\limits_{b \to \infty } \left( {\frac{{{{\left( {\ln x} \right)}^{ - p + 1}}}}{{ - p + 1}} - \frac{{{{\left( {\ln {e^2}} \right)}^{ - p + 1}}}}{{ - p + 1}}} \right) \cr & {\text{simplify}} \cr & p > 1 \cr & = \mathop {\lim }\limits_{b \to \infty } \left( {\frac{1}{{\left( { - p + 1} \right){{\left( {\ln x} \right)}^{p - 1}}}} - \frac{{{{\left( {\ln {e^2}} \right)}^{ - p + 1}}}}{{ - p + 1}}} \right) \cr & {\text{evaluate the limit}} \cr & = \frac{1}{{\left( { - p + 1} \right){{\left( {\ln \infty } \right)}^{p - 1}}}} - \frac{{{{\left( {\ln {e^2}} \right)}^{ - p + 1}}}}{{ - p + 1}} \cr & = - \frac{{{{\left( 2 \right)}^{ - p + 1}}}}{{ - p + 1}} \cr & = \frac{{{{\left( 2 \right)}^{ - p + 1}}}}{{p - 1}} \cr & = \frac{1}{{\left( {p - 1} \right){2^{p - 1}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.