Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.3 Techniques for Computing Limits - 2.3 Exercises: 18

Answer

$\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}=4$

Work Step by Step

$\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}$ Quotient: because $ \lim\limits_{x \to 1}{h(x)} = 2\ne0$ $\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}=\frac{\lim\limits_{x \to 1}{f(x)}}{\lim\limits_{x \to 1}{h(x)}}$ We know that $ \lim\limits_{x \to 1}{f(x)} = 8$ $\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}=\frac{\lim\limits_{x \to 1}{f(x)}}{\lim\limits_{x \to 1}{h(x)}}=\frac{8}{2}=4$ So $\lim\limits_{x \to 1}{(4f(x))}=4\lim\limits_{x \to 1}{f(x)} = 4\times8=32$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.