Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.6 Calculus of Vector-Valued Functions - 11.6 Exercises - Page 815: 36

Answer

\[\begin{gathered} \left( { - 2t{e^{2t}} - 2{t^2}{e^{2t}} + 2{e^{2t}} - 16{e^{ - t}}} \right){\mathbf{i}}\, + \left( {6{t^2}{e^{2t}} + 4{t^3}{e^{2t}} - 8{e^t}} \right){\mathbf{j}} \hfill \\ \, + \left( {12{t^2}{e^{ - t}} - 2t{e^t} - 4{t^3}{e^{ - t}} - {t^2}{e^t} + {e^t}} \right){\mathbf{k}} \hfill \\ \end{gathered} \]

Work Step by Step

\[\begin{gathered} {\text{Let }}{\mathbf{u}}\left( t \right) = 2{t^3}{\mathbf{i}} + \left( {{t^2} - 1} \right){\mathbf{j}} - 8{\mathbf{k}}{\text{ and }}{\mathbf{v}}\left( t \right) = {e^t}{\mathbf{i}} + 2{e^{ - t}}{\mathbf{j}} - {e^{2t}}{\mathbf{k}} \hfill \\ {\text{Calculate the derivative }}{\mathbf{u}}\left( t \right) \times {\mathbf{v}}\left( t \right){\text{using the cross product rule}} \hfill \\ \frac{d}{{dt}}\left( {{\mathbf{u}}\left( t \right) \times {\mathbf{v}}\left( t \right)} \right) = {\mathbf{u}}'\left( t \right) \times {\mathbf{v}}\left( t \right) + {\mathbf{u}}\left( t \right) \times {\mathbf{v}}'\left( t \right) \hfill \\ {\mathbf{u}}'\left( t \right) = 6{t^2}{\mathbf{i}} + 2t{\mathbf{j}} \hfill \\ {\mathbf{v}}'\left( t \right) = {e^t}{\mathbf{i}} - 2{e^{ - t}}{\mathbf{j}} - 2{e^{2t}}{\mathbf{k}} \hfill \\ \hfill \\ {\mathbf{u}}'\left( t \right) \times {\mathbf{v}}\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ {6{t^2}}&{2t}&0 \\ {{e^t}}&{2{e^{ - t}}}&{ - {e^{2t}}} \end{array}} \right| \hfill \\ {\mathbf{u}}'\left( t \right) \times {\mathbf{v}}\left( t \right) = \left| {\begin{array}{*{20}{c}} {2t}&0 \\ {2{e^{ - t}}}&{ - {e^{2t}}} \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} {6{t^2}}&0 \\ {{e^t}}&{ - {e^{2t}}} \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} {6{t^2}}&{2t} \\ {{e^t}}&{2{e^{ - t}}} \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{u}}'\left( t \right) \times {\mathbf{v}}\left( t \right) = - 2t{e^{2t}}{\mathbf{i}} + 6{t^2}{e^{2t}}{\mathbf{j}} + \left( {12{t^2}{e^{ - t}} - 2t{e^t}} \right){\mathbf{k}} \hfill \\ \hfill \\ {\mathbf{u}}\left( t \right) \times {\mathbf{v}}'\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ {2{t^3}}&{{t^2} - 1}&{ - 8} \\ {{e^t}}&{ - 2{e^{ - t}}}&{ - 2{e^{2t}}} \end{array}} \right| \hfill \\ {\mathbf{u}}\left( t \right) \times {\mathbf{v}}'\left( t \right) = \left| {\begin{array}{*{20}{c}} {{t^2} - 1}&{ - 8} \\ { - 2{e^{ - t}}}&{ - 2{e^{2t}}} \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} {2{t^3}}&{ - 8} \\ {{e^t}}&{ - 2{e^{2t}}} \end{array}} \right|{\mathbf{j}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left| {\begin{array}{*{20}{c}} {2{t^3}}&{{t^2} - 1} \\ {{e^t}}&{ - 2{e^{ - t}}} \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{u}}\left( t \right) \times {\mathbf{v}}'\left( t \right) = \left( { - 2{t^2}{e^{2t}} + 2{e^{2t}} - 16{e^{ - t}}} \right){\mathbf{i}} - \left( { - 4{t^3}{e^{2t}} + 8{e^t}} \right){\mathbf{j}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( { - 4{t^3}{e^{ - t}} - {t^2}{e^t} + {e^t}} \right){\mathbf{k}} \hfill \\ \hfill \\ {\mathbf{u}}'\left( t \right) \times {\mathbf{v}}\left( t \right) + {\mathbf{u}}\left( t \right) \times {\mathbf{v}}'\left( t \right) \hfill \\ = \left( { - 2t{e^{2t}} - 2{t^2}{e^{2t}} + 2{e^{2t}} - 16{e^{ - t}}} \right){\mathbf{i}}\, + \left( {6{t^2}{e^{2t}} + 4{t^3}{e^{2t}} - 8{e^t}} \right){\mathbf{j}} \hfill \\ \, + \left( {12{t^2}{e^{ - t}} - 2t{e^t} - 4{t^3}{e^{ - t}} - {t^2}{e^t} + {e^t}} \right){\mathbf{k}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.