Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - 9.5 Linear Equations - 9.5 Exercises - Page 665: 8

Answer

$$ y= -x^4\cos x +\frac{x^4}{3}\cos^3x+Cx^4$$

Work Step by Step

Given $$4 x^{3} y+x^{4} y^{\prime}=\sin ^{3} x$$ Rewrite the equation $$ y'+ \frac{4}{x} y= \frac{\sin ^{3} x}{x^4} $$ Since the equation is linear and $p(x)= 4/x$ and $q(x)= \frac{\sin ^{3} x}{x^4}$, then \begin{align*} \mu &=e^{\int p(x)}dx\\ &= e^{\int (4/x)dx}\\ &=e^{4\ln x}\\ &=e^{\ln x^4}\\ &= x^4 \end{align*} Hence the general solution given by \begin{align*} \mu(x)y&=\int \mu(x)q(x)dx\\ x^4 y&= \int x^4 \frac{\sin ^{3} x}{x^4}dx\ \ \ \\ &= \int \sin ^{3} xdx\\ &= \int (1-\cos^2 x)\sin xdx\\ &= -\cos x +\frac{1}{3}\cos^3x+C \end{align*} Then $$ y= -x^4\cos x +\frac{x^4}{3}\cos^3x+Cx^4$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.