Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - 9.5 Linear Equations - 9.5 Exercises - Page 665: 13

Answer

$$ y=\frac{1}{3t^3}\left(1+t^2\right)^{\frac{3}{2}}+\frac{C}{t^3}$$

Work Step by Step

Given $$t^{2} \frac{d y}{d t}+3 t y=\sqrt{1+t^{2}}, \quad t>0$$ Rewrite the equation $$ \frac{d y}{d t}+\frac{3}{t} y=\frac{\sqrt{1+t^{2}}}{t^2} $$ Since the equation is linear and $p(t)=\frac{3}{t} $ and $q(t)=\frac{\sqrt{1+t^{2}}}{t^2}$, then \begin{align*} \mu &=e^{\int p(t)}dt\\ &= e^{\int (\frac{3}{t})dt}\\ &=e^{3\ln t}\\ &= t^3 \end{align*} Hence the general solution given by \begin{align*} \mu(t)y&=\int \mu(t)q(t)dt\\ t^3 y&= \int t^3 \frac{\sqrt{1+t^{2}}}{t^2} dt\ \ \\ &=\int t \sqrt{1+t^{2}} dt\ \ \\ &=\frac{1}{3}\left(1+t^2\right)^{\frac{3}{2}}+C \end{align*} Then $$ y=\frac{1}{3t^3}\left(1+t^2\right)^{\frac{3}{2}}+\frac{C}{t^3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.