Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - 9.5 Linear Equations - 9.5 Exercises - Page 665: 14

Answer

$$ r=\frac{e^t}{\ln t} +\frac{C}{\ln t}$$

Work Step by Step

Given $$t \ln t \frac{d r}{d t}+r=t e^{t}$$ Rewrite the equation $$ \frac{d r}{d t}+\frac{1}{t\ln t}r=\frac{t e^{t} }{t\ln t}$$ Since the equation is linear and $p(t)=\frac{1}{t\ln t} $ and $q(t)=\frac{t e^{t} }{t\ln t}$, then \begin{align*} \mu &=e^{\int p(t)}dt\\ &= e^{\int (\frac{1}{t\ln t})dt}\\ &=e^{ \ln \ln t}\\ &=\ln t \end{align*} Hence the general solution given by \begin{align*} \mu(t)r&=\int \mu(t)q(t)dt\\ (\ln t) r &= \int \ln t \frac{t e^{t} }{t\ln t} dt\ \ \\ &=\int e^t dt\ \ \\ &=e^t +C \end{align*} Then $$ r=\frac{e^t}{\ln t} +\frac{C}{\ln t}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.