Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.8 Indeterminate Forms and I'Hospital's Rule - 6.8 Exercises - Page 500: 26

Answer

$\infty$

Work Step by Step

Given: $\lim\limits_{u\to\infty}\dfrac{e^{u/10}}{u^3}$ Here, $u\to\infty;e^{u/10}\to\infty;u^3\to\infty$. This shows an indeterminate form of type $\dfrac{\infty}{-\infty}$, and so we will apply L'Hospital Rule. or, $=\lim_{u\to\infty}\dfrac{(e^{u/10})'}{(u^3)'}$ or, $=\lim\limits_{u\to\infty}\dfrac{e^{u/10}(u/10)'}{3u^2}$ or,$A=\lim\limits_{u\to\infty}\dfrac{e^{u/10}}{30u^2}$ Here,$u\to\infty;e^{u/10}\to\infty; u^2\to\infty$. Again, This shows an indeterminate form of type $\dfrac{\infty}{-\infty}$, and so we will reapply L'Hospital Rule. $=\lim\limits_{u\to\infty}\dfrac{e^{u/10}(u/10)'}{60u}$ and $=\lim\limits_{u\to\infty}\dfrac{e^{u/10}}{600u}$ Again, as $u\to\infty$, $e^{u/10}\to\infty$ and $u\to\infty$. Again, this shows an indeterminate form of type $\dfrac{\infty}{-\infty}$, and so we will reapply L'Hospital Rule. Thus we have $=\lim_{u\to\infty}\dfrac{e^{u/10}(u/10)'}{600}$ and $=\lim\limits_{u\to\infty}\dfrac{e^{(u/10)}}{6000}$ As $u\to\infty$; $e^{u/10}\to\infty;\dfrac{e^{(u/10)}}{6000} \to \infty.$ Hence, we have $=\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.