Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.2* The Natural Logarithmic Functions - 6.2* Exercises - Page 446: 74


$\int \frac{cos(lnt)}{t}dt=sin(lnt)+Constant$

Work Step by Step

Evaluate $\int \frac{cos(lnt)}{t}dt$. Consider $ln t =u$ and $\frac{1}{t} dt = du$ Thus, $\int \frac{cos(lnt)}{t}dt=\int cos (u) du$ $=sin(u)+ Constant$ $=sin(lnt)+Constant$ Hence, $\int \frac{cos(lnt)}{t}dt=sin(lnt)+Constant$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.