Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.2* The Natural Logarithmic Functions - 6.2* Exercises - Page 446: 33



Work Step by Step

$\frac{d}{dx}\ln|2-x-5x^2|$ $=\frac{1}{2-x-5x^2}\frac{d}{dx}(2-x-5x^2)$ $=\frac{1}{2-x-5x^2}*(-1-10x)$ $=\frac{-1-10x}{2-x-5x^2}$ $=\frac{-1-10x}{2-x-5x^2}*\frac{-1}{-1}$ $=\frac{10x+1}{5x^2+x-2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.