Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 13 - Vector Functions - 13.2 Derivatives and Integrals of Vector Functions - 13.2 Exercises - Page 900: 9

Answer

\[ \vec{r}'(t)=\langle\sqrt{t-2},3,\frac{1}{t^2}\rangle \]

Work Step by Step

\( \vec{r}(t)=\langle\sqrt{t-2},2,\frac{1}{t^2}\rangle\) In order to get \(\vec{r}'(t)\) we simply take the derivate of each component. \(\vec{r}'(t)=\langle \frac{1}{2\sqrt{t-2}}, 0, \frac{-2}{t^3} \rangle \).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.