Answer
\[
\vec{r}'(t)=\langle\sqrt{t-2},3,\frac{1}{t^2}\rangle
\]
Work Step by Step
\( \vec{r}(t)=\langle\sqrt{t-2},2,\frac{1}{t^2}\rangle\)
In order to get \(\vec{r}'(t)\) we simply take the derivate of each component.
\(\vec{r}'(t)=\langle \frac{1}{2\sqrt{t-2}}, 0, \frac{-2}{t^3} \rangle \).