Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 13 - Vector Functions - 13.2 Derivatives and Integrals of Vector Functions - 13.2 Exercises - Page 900: 22

Answer

$T(0)=\lt \dfrac{2}{3},-\dfrac{2}{3},\dfrac{1}{3} \gt $, $r''(0)=\lt 4,4,4 \gt$, $ r'(t) \cdot r''(t) =12e^{4t}-8e^{-4t}+12te^{4t}+8t^2e^{4t}$ or, $T(0)=\dfrac{2}{3}i-\dfrac{2}{3}j+\dfrac{1}{3}k$, $r''(0)=4i+4j+4k$, and $ r'(t) \cdot r''(t) =12e^{4t}-8e^{-4t}+12te^{4t}+8t^2e^{4t}$

Work Step by Step

As we are given that $r(t)=\lt e^{2t},e^{-2t},te^{2t} \gt $ Need to determine $r'(t)$ .Take derivative of $r(t)$ with respect to $t$. we have $r'(t)=2e^{2t}i-2e^{-2t}j+(e^{2t}+2te^{2t})k$ Use formula $T(t)=\dfrac{r'(t)}{|r'(t)|}$ or, $T(0)=\dfrac{r'(0)}{|r'(0)|}$ and $r'(0)=2e^{2(0)}i-2e^{-2(0)}j+(e^{2(0)}+2(0)e^{2(0)})k=2i-2j+k$, gives $|r'(0)|=\sqrt {4+4+1}=3$ Also, $T(0)=\dfrac{2i-2j+k}{3}=\dfrac{2}{3}i-\dfrac{2}{3}j+\dfrac{1}{3}k$ $r''(t)=4e^{2t}i+4e^{-2t}j+(2e^{2t}+2e^2t+4te^{2t})k$ it yields $r''(0)=4e^{2(0)}i+4e^{-2(0)}j+(2e^{2(0)}+2e^2(0)+4te^{2(0)})k=4i+4j+4k$ Now, $ r'(t) \cdot r''(t) =(2e^{2t}i-2e^{-2t}j+(e^{2t}+2te^{2t})k) \cdot 4e^{2t}i+4e^{-2t}j+(2e^{2t}+2e^2t+4te^{2t})k)$ or, $=12e^{4t}-8e^{-4t}+12te^{4t}+8t^2e^{4t}$ Our required answers are: $T(0)=\lt \dfrac{2}{3},-\dfrac{2}{3},\dfrac{1}{3} \gt $, $r''(0)=\lt 4,4,4 \gt$, $ r'(t) \cdot r''(t) =12e^{4t}-8e^{-4t}+12te^{4t}+8t^2e^{4t}$ or, $T(0)=\dfrac{2}{3}i-\dfrac{2}{3}j+\dfrac{1}{3}k$, $r''(0)=4i+4j+4k$, and $ r'(t) \cdot r''(t) =12e^{4t}-8e^{-4t}+12te^{4t}+8t^2e^{4t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.