Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 13 - Vector Functions - 13.2 Derivatives and Integrals of Vector Functions - 13.2 Exercises - Page 900: 3

Answer

\(a)\) Graphed below \(b)\) \(\vec{r}'(t)=\langle1,2t\rangle\) \(c)\) Graphed below

Work Step by Step

\(a)\) We can plug in values to sketch a rough graph of the function: At \(t=-1\): \[ \vec{r}(t)=\langle -3,2 \rangle \] At \(t=0\): \[ \vec{r}(t)=\langle -2,1 \rangle \] At \(t=1\): \[ \vec{r}(t)=\langle -1,2 \rangle \] \(b)\) \(\vec{r}(t)=\langle t-2,t^2+1 \rangle\) To find the derivative of \(\vec{r}\), we have: \[\vec{r}'(t)=\langle1,2t\rangle\] \(c)\) At \(t=-1\) we have: \[ \vec{r}(-1)=\langle (-1)-2,(-1)^2+1 \rangle \\ \vec{r}(-1)=\langle -3,2 \rangle \\ \] \[ \vec{r}'(-1)=\langle1,2(-1)\rangle \\ \vec{r}'(-1)=\langle1,-2\rangle \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.