Answer
\[
\vec{r}'(t)=\langle a \sin (2at), e^{bt}+bte^{bt},-c \sin (2ct) \rangle
\]
Work Step by Step
\[
\vec{r}(t)=\langle\sin^2 at, te^{bt},\cos^2ct \rangle
\]
In order to compute \(\vec{r}\) we simply take the derivative of each component with respect to \(t\) of \(\vec{r}\).
\[
\vec{r}'(t)=\langle a \sin (2at), e^{bt}+bte^{bt},-c \sin (2ct) \rangle
\]