Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 16


$$\frac{1}{2 e^{4}}$$

Work Step by Step

\begin{aligned} \int_{2}^{\infty} e^{-2 x} d x &=\lim _{R \rightarrow \infty} \int_{2}^{R} e^{-2 x} d x \\ &=\lim _{R \rightarrow \infty} \left.\frac{e^{-2 x}}{-2}\right|_{2} ^{R} \\ &= \lim _{R \rightarrow \infty}\left(\frac{1}{2 e^{4}}-\frac{1}{2 e^{2 R}} \right) \\ &= \frac{1}{2 e^{4}} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.