Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 52

Answer

$18 - \frac{{17}}{3}\sqrt {10}$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{{x^3}}}{{\sqrt {9 + {x^2}} }}} dx \cr & {\text{Integrating }}\int {\frac{{{x^3}}}{{\sqrt {9 + {x^2}} }}} dx \cr & {\text{First rewrite the integrand}} \cr & = \int {\left( {\frac{x}{{\sqrt {9 + {x^2}} }}} \right)} \left( {{x^2}} \right)dx \cr & {\text{Let }}u = {x^2},{\text{ }}du = 2xdx \cr & dv = \frac{x}{{\sqrt {9 + {x^2}} }},{\text{ }}v = \sqrt {9 + {x^2}} \cr & {\text{Use the integration by parts formula}} \cr & \int {udv} = uv - \int {vdu} \cr & \int {\frac{{{x^3}}}{{\sqrt {9 + {x^2}} }}} dx = {x^2}\left( {\sqrt {9 + {x^2}} } \right) - \int {\left( {\sqrt {9 + {x^2}} } \right)\left( {2x} \right)dx} \cr & \int {\frac{{{x^3}}}{{\sqrt {9 + {x^2}} }}} dx = {x^2}\sqrt {9 + {x^2}} - \int {\sqrt {9 + {x^2}} \left( {2x} \right)dx} \cr & \int {\frac{{{x^3}}}{{\sqrt {9 + {x^2}} }}} dx = {x^2}\sqrt {9 + {x^2}} - \left( {\frac{{{{\left( {9 + {x^2}} \right)}^{3/2}}}}{{3/2}}} \right) + C \cr & \int {\frac{{{x^3}}}{{\sqrt {9 + {x^2}} }}} dx = {x^2}\sqrt {9 + {x^2}} - \frac{2}{3}{\left( {9 + {x^2}} \right)^{3/2}} + C \cr & {\text{Therefore}}{\text{,}} \cr & \int_0^1 {\frac{{{x^3}}}{{\sqrt {9 + {x^2}} }}} dx = \left[ {{x^2}\sqrt {9 + {x^2}} - \frac{2}{3}{{\left( {9 + {x^2}} \right)}^{3/2}}} \right]_0^1 \cr & {\text{Evaluating}} \cr & = \left[ {{{\left( 1 \right)}^2}\sqrt {9 + {{\left( 1 \right)}^2}} - \frac{2}{3}{{\left( {9 + {{\left( 1 \right)}^2}} \right)}^{3/2}}} \right] - \left[ {0 - \frac{2}{3}{{\left( {9 + {{\left( 0 \right)}^2}} \right)}^{3/2}}} \right] \cr & = \left[ {\sqrt {10} - \frac{2}{3}{{\left( {10} \right)}^{3/2}}} \right] - \left[ {0 - \frac{2}{3}\left( {27} \right)} \right] \cr & = \sqrt {10} - \frac{{20}}{3}\sqrt {10} + 18 \cr & = 18 - \frac{{17}}{3}\sqrt {10} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.