Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 32

Answer

$\frac{1}{2}\cos x\sinh x + \frac{1}{2}\sin x\cosh x + C $

Work Step by Step

$$\eqalign{ & \int {\cos x\cosh x} dx \cr & {\text{Let }}u = \cos x,{\text{ }}du = - \sin xdx \cr & dv = \cosh xdx,{\text{ }}v = \sinh x \cr & {\text{Using the integration by parts formula}} \cr & \int {udv} = uv - \int {vdu} \cr & \int {\cos x\cosh x} dx = \cos x\sinh x - \int {\sinh x\left( { - \sin x} \right)dx} \cr & \int {\cos x\cosh x} dx = \cos x\sinh x + \int {\sinh x\sin xdx} \cr & {\text{Now}}{\text{,}} \cr & {\text{Let }}u = \sin x,{\text{ }}du = \cos xdx \cr & dv = \sinh xdx,{\text{ }}v = \cosh x \cr & {\text{Using the integration by parts formula}} \cr & \int {\cos x\cosh x} dx = \cos x\sinh x + \sin x\cosh x - \int {\cosh x\cos xdx} \cr & {\text{Add }}\int {\cosh x\cos xdx} {\text{ to both sides ofthe equation}} \cr & 2\int {\cos x\cosh x} dx = \cos x\sinh x + \sin x\cosh x \cr & {\text{Solve for }}\int {\cos x\cosh x} dx \cr & \int {\cos x\cosh x} dx = \frac{1}{2}\cos x\sinh x + \frac{1}{2}\sin x\cosh x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.