Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 395: 29

Answer

$\frac{3^{x}\sin(x)+\ln 3\cdot 3^{x}\cos{(x)}}{1+(\ln 3)^{2}}+C$

Work Step by Step

$$\int (3^{x}\cos(x))~dx$$ The integrand is a product, so we try writing $3^{x}\cos(x)dx=udv$ with: $$u=3^{x},~~~~~~~~~~dv=\cos(x)dx$$ $$du=\frac{du}{dx}dx=\ln 3 \cdot 3^{x}dx,~~~~~~~~~~v=\sin(x)$$ By the Integration by Parts formula, $$\int (3^{x}\cos(x))~dx=3^{x}\sin(x)-\int \sin(x) \ln 3 \cdot 3^{x}dx+C$$ $$\int (3^{x}\cos(x))~dx=3^{x}\sin(x)-\ln 3 \cdot\int 3^{x}\sin(x)dx+C$$ Using the same method, it follows: $$\int 3^{x}\sin(x)dx=-3^{x}\cos{(x)}-\int -\cos(x) \ln 3 \cdot 3^{x}dx +C $$ $$\int 3^{x}\sin(x)dx=-3^{x}\cos{(x)}+\int \cos(x) \ln 3 \cdot 3^{x}dx+C $$ $$\int 3^{x}\sin(x)dx=-3^{x}\cos{(x)}+\ln 3 \cdot\int \cos(x) 3^{x}dx +C $$ so: $$\int (3^{x}\cos(x))~dx=3^{x}\sin(x)-\ln 3 \cdot\int 3^{x}\sin(x)dx+C$$ $$\int (3^{x}\cos(x))~dx=3^{x}\sin(x)-\ln 3 \cdot(-3^{x}\cos{(x)}+\ln 3 \cdot\int \cos(x) 3^{x}dx)+C$$ $$\int (3^{x}\cos(x))~dx=3^{x}\sin(x)+\ln 3\cdot 3^{x}\cos{(x)}-(\ln 3)^{2}\cdot\int \cos(x) 3^{x}dx+C$$ $$I=3^{x}\sin(x)+\ln 3\cdot 3^{x}\cos{(x)}-(\ln 3)^{2}\cdot I+C$$ $$I+(\ln 3)^{2}\cdot I=3^{x}\sin(x)+\ln 3\cdot 3^{x}\cos{(x)}+C$$ $$I(1+(\ln 3)^{2})=3^{x}\sin(x)+\ln 3\cdot 3^{x}\cos{(x)}+C$$ $$I=\frac{3^{x}\sin(x)+\ln 3\cdot 3^{x}\cos{(x)}}{1+(\ln 3)^{2}}+C$$ $$\int 3^{x}\cos(x)~dx=\frac{3^{x}\sin(x)+\ln 3\cdot 3^{x}\cos{(x)}}{1+(\ln 3)^{2}}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.