Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.2 Setting Up Integrals: Volume, Density, Average Value - Exercises - Page 298: 60

Answer

$c=\frac{1444}{225}$

Work Step by Step

The average value of $f(x)=\sqrt x$ on $[4,9]$ is: $$\frac{1}{9-4}\int_{4}^{9} \sqrt x~dx$$ so: $$f(c)=\frac{1}{9-4}\int_{4}^{9} \sqrt x~dx$$ $$f(c)=\frac{1}{5}\int_{4}^{9} \sqrt x~dx$$ $$\sqrt{c}=\frac{1}{5}\int_{4}^{9} \sqrt x~dx$$ $$\sqrt{c}=\frac{1}{5}\int_{4}^{9} x^{\frac{1}{2}}~dx$$ Using the $FTC I$ it follows: $$\sqrt{c}=\frac{1}{5}[\frac{2}{3}x^{\frac{3}{2}}]_{4}^{9}$$ $$\sqrt{c}=\frac{1}{5}[\frac{2}{3}\cdot 9^{\frac{3}{2}}-(\frac{2}{3}\cdot 4^{\frac{3}{2}})]$$ $$\sqrt{c}=\frac{38}{15}$$ $$c=(\frac{38}{15})^{2}=\frac{1444}{225}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.