Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.2 Setting Up Integrals: Volume, Density, Average Value - Exercises - Page 298: 49

Answer

$20$ $20+\frac{15}{2\pi} \approx 22.39$

Work Step by Step

$$T_{ave}=\frac{1}{24-0}\int_{0}^{24}(20+5\cos(\frac{\pi}{12}\cdot t))dt=\frac{1}{24}[20t+5\cdot \frac{12}{\pi}\sin(\frac{\pi}{12}\cdot t)]_{0}^{24}=\frac{1}{24}[20\cdot 24+5\cdot \frac{12}{\pi}\sin(\frac{\pi}{12}\cdot 24)-(20\cdot 0+5\cdot \frac{12}{\pi}\sin(\frac{\pi}{12}\cdot 0))]=20$$ ------------------------------------------------------------- $$T_{ave}=\frac{1}{6-2}\int_{2}^{6}(20+5\cos(\frac{\pi}{12}\cdot t))dt=\frac{1}{4}[20t+5\cdot \frac{12}{\pi}\sin(\frac{\pi}{12}\cdot t)]_{2}^{6}=\frac{1}{4}[20\cdot 6+5\cdot \frac{12}{\pi}\sin(\frac{\pi}{12}\cdot 6)-(20\cdot 2+5\cdot \frac{12}{\pi}\sin(\frac{\pi}{12}\cdot 2))]=20+\frac{15}{2\pi} \approx 22.39$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.