Answer
$\frac{\pi R^{2}}{3} $
Work Step by Step
The average area of the circles whose radii vary from $0$ to $R$ is:
$$\frac{1}{R-0} \int_{0}^{R}A(r)~dr$$ where $A(r)=\pi r^{2}$ is the area of the circle
$$\frac{1}{R-0} \int_{0}^{R}\pi r^{2}~dr$$
$$\frac{\pi}{R-0} \int_{0}^{R} r^{2}~dr$$
$$\frac{\pi}{R} \int_{0}^{R} r^{2}~dr$$
$$\frac{\pi}{R} [\frac{r^{3}}{3}]_{0}^{R} $$
$$\frac{\pi}{R} (\frac{R^{3}}{3}-\frac{0^{3}}{3}) $$
$$\frac{\pi R^{2}}{3} $$