Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.1 Approximating and Computing Area - Exercises - Page 236: 56

Answer

$R_N=\frac{216}{3}+\frac{216}{2N}+\frac{216}{6N^{2}}-\frac{72}{2}-\frac{72}{2N}+6$ $A=42$

Work Step by Step

$f(x)=x^{2}$, $[-1,5]$ So using the definition of $R_N$ it follows: $$R_N=\displaystyle \sum_{j=1}^{N}\left(-1+j\frac{5-(-1)}{N}\right)^{2}\frac{5-(-1)}{N}$$ $$R_N=\displaystyle \sum_{j=1}^{N}\left(-1+j\frac{6}{N}\right)^{2}\frac{6}{N}$$ $$R_N=\displaystyle \sum_{j=1}^{N}\left[\left(j\frac{6}{N}\right)^{2}-\frac{12}{N}j+1\right]\frac{6}{N}$$ $$R_N=\displaystyle \sum_{j=1}^{N}\left[j^{2}\frac{216}{N^{3}}-\frac{72}{N^{2}}j+\frac{6}{N}\right]$$ $$R_N=\displaystyle \sum_{j=1}^{N}j^{2}\frac{216}{N^{3}}-\displaystyle \sum_{j=1}^{N}\frac{72}{N^{2}}j+\displaystyle \sum_{j=1}^{N} \frac{6}{N}$$ $$R_N=\frac{216}{N^{3}}\displaystyle \sum_{j=1}^{N}j^{2}-\frac{72}{N^{2}}\displaystyle \sum_{j=1}^{N}j+\frac{6}{N}\displaystyle \sum_{j=1}^{N} 1$$ $$R_N=\frac{216}{N^{3}} (\frac{N^{3}}{3}+\frac{N^{2}}{2}+\frac{N}{6})-\frac{72}{N^{2}}(\frac{N^{2}}{2}+\frac{N}{2})+\frac{6}{N}\cdot N $$ $$R_N=\frac{216}{3}+\frac{216}{2N}+\frac{216}{6N^{2}}-\frac{72}{2}-\frac{72}{2N}+6$$ So the area is: $$A=\lim\limits_{N \to \infty}R_N$$ $$A=\lim\limits_{N \to \infty}\left(\frac{216}{3}+\frac{216}{2N}+\frac{216}{6N^{2}}-\frac{72}{2}-\frac{72}{2N}+6\right)$$ $$A=\displaystyle (\frac{216}{3}+0+0-\frac{72}{2}-0+6)$$ $$A=42$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.