Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.1 Approximating and Computing Area - Exercises - Page 236: 55

Answer

$R_N=\frac{1}{N^{3}}\cdot\displaystyle \sum_{j=1}^{N}i^{2}$ $A=\frac{1}{3}$

Work Step by Step

$f(x)=x^{2}$, $[0,1]$ So using the definition of $R_N$ it follows: $$R_N=\displaystyle \sum_{j=1}^{N}\left(0+i\frac{1-0}{N}\right)^{2}\frac{1-0}{N}$$ $$R_N=\displaystyle \sum_{j=1}^{N}\left(i\frac{1}{N}\right)^{2}\frac{1}{N}$$ $$R_N=\displaystyle \sum_{j=1}^{N}i^{2}\frac{1}{N^{2}}\cdot \frac{1}{N}$$ $$R_N=\displaystyle \sum_{j=1}^{N}i^{2}\cdot\frac{1}{N^{3}}$$ $$R_N=\frac{1}{N^{3}}\cdot\displaystyle \sum_{j=1}^{N}i^{2}$$ So the area is: $$A=\lim\limits_{N \to \infty}R_N$$ $$A=\lim\limits_{N \to \infty}\displaystyle \frac{1}{N^{3}} \cdot \left(\frac{N^{3}}{3}+\frac{N^{2}}{2}+\frac{N}{6}\right)$$ $$A=\lim\limits_{N \to \infty}\displaystyle \left(\frac{1}{3}+\frac{1}{2N}+\frac{1}{6N^{2}}\right)$$ $$A=\displaystyle \left(\frac{1}{3}+0+0\right)$$ $$A=\frac{1}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.