Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - Chapter Review Exercises - Page 971: 29

Answer

$\mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}s = - 2$

Work Step by Step

We have $f\left( {x,y} \right) = x - y$. The unit semicircle ${x^2} + {y^2} = 1$, $y \ge 0$ can be parametrized by ${\bf{r}}\left( t \right) = \left( {\cos t,\sin t} \right)$ for $0 \le t \le \pi $ So, we obtain $f\left( {{\bf{r}}\left( t \right)} \right) = \cos t - \sin t$ $ds = ||{\bf{r}}'\left( t \right)||dt = \sqrt {\left( { - \sin t,\cos t} \right)\cdot\left( { - \sin t,\cos t} \right)} dt = dt$ By Eq. (4) in Section 17.2: $\mathop \smallint \limits_C^{} f\left( {x,y} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $\mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}s = \mathop \smallint \limits_0^\pi \left( {\cos t - \sin t} \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}s = \left( {\sin t + \cos t} \right)|_0^\pi = - 2$ So, $\mathop \smallint \limits_C^{} \left( {x - y} \right){\rm{d}}s = - 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.