Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - Chapter Review Exercises - Page 971: 28

Answer

$\mathop \smallint \limits_C^{} xy{\rm{d}}s = \frac{1}{6}\sqrt 5 $

Work Step by Step

We have $f\left( {x,y} \right) = xy$. Using the parametrization ${\bf{r}}\left( t \right) = \left( {t,2t - 1} \right)$ for $0 \le t \le 1$, we obtain $f\left( {{\bf{r}}\left( t \right)} \right) = t\left( {2t - 1} \right) = 2{t^2} - t$ $ds = ||{\bf{r}}'\left( t \right)||dt = \sqrt {\left( {1,2} \right)\cdot\left( {1,2} \right)} dt = \sqrt 5 dt$ By Eq. (4) in Section 17.2: $\mathop \smallint \limits_C^{} f\left( {x,y} \right){\rm{d}}s = \mathop \smallint \limits_a^b f\left( {{\bf{r}}\left( t \right)} \right)||{\bf{r}}'\left( t \right)||{\rm{d}}t$ $\mathop \smallint \limits_C^{} xy{\rm{d}}s = \sqrt 5 \mathop \smallint \limits_0^1 \left( {2{t^2} - t} \right){\rm{d}}t$ $\mathop \smallint \limits_C^{} xy{\rm{d}}s = \sqrt 5 \left( {\frac{2}{3}{t^3} - \frac{1}{2}{t^2}} \right)|_0^1 = \sqrt 5 \left( {\frac{2}{3} - \frac{1}{2}} \right) = \frac{1}{6}\sqrt 5 $ So, $\mathop \smallint \limits_C^{} xy{\rm{d}}s = \frac{1}{6}\sqrt 5 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.