Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 959: 41

Answer

We prove a famous result of Archimedes.

Work Step by Step

Let $S$ be the surface area of the portion of the sphere of radius $R$ between two horizontal planes $z=a$ and $z=b$ as is shown in Figure 22. Since the sphere is given by ${x^2} + {y^2} + {z^2} = {R^2}$, we obtain the domain ${\cal D}$ of the surface $S$ in the $xy$-plane: ${\cal D} = \left\{ {\left( {x,y} \right):{R^2} - {b^2} \le {x^2} + {y^2} \le {R^2} - {a^2}} \right\}$ Using $x = r\cos \theta $ and $y = r\sin \theta $, we can parametrize the sphere ${x^2} + {y^2} + {z^2} = {R^2}$ in polar coordinates: $G\left( {r,\theta } \right) = \left( {r\cos \theta ,r\sin \theta ,\sqrt {{R^2} - {r^2}} } \right)$ where the domain is ${\cal D} = \left\{ {\left( {r,\theta } \right):0 \le \theta \le 2\pi ,\sqrt {{R^2} - {a^2}} \le r \le \sqrt {{R^2} - {b^2}} } \right\}$. ${{\bf{T}}_r} = \dfrac{{\partial G}}{{\partial r}} = \left( {\cos \theta ,\sin \theta , - \dfrac{r}{{\sqrt {{R^2} - {r^2}} }}} \right)$ ${{\bf{T}}_\theta } = \dfrac{{\partial G}}{{\partial \theta }} = \left( { - r\sin \theta ,r\cos \theta ,0} \right)$ ${\bf{N}}\left( {r,\theta } \right) = {{\bf{T}}_r} \times {{\bf{T}}_\theta } = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\cos \theta }&{\sin \theta }&{ - \dfrac{r}{{\sqrt {{R^2} - {r^2}} }}}\\ { - r\sin \theta }&{r\cos \theta }&0 \end{array}} \right|$ ${\bf{N}}\left( {r,\theta } \right) = \dfrac{{{r^2}\cos \theta }}{{\sqrt {{R^2} - {r^2}} }}{\bf{i}} + \dfrac{{{r^2}\sin \theta }}{{\sqrt {{R^2} - {r^2}} }}{\bf{j}} + r{\bf{k}}$ $||{\bf{N}}\left( {r,\theta } \right)|| = \sqrt {\dfrac{{{r^4}{{\cos }^2}\theta + {r^4}{{\sin }^2}\theta + {R^2}{r^2} - {r^4}}}{{{R^2} - {r^2}}}} = \dfrac{{Rr}}{{\sqrt {{R^2} - {r^2}} }}$ Evaluate the area of $S$: $Area\left( S \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} ||{\bf{N}}\left( {r,\theta } \right)||{\rm{d}}r{\rm{d}}\theta $ $Area\left( S \right) = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = \sqrt {{R^2} - {b^2}} }^{\sqrt {{R^2} - {a^2}} } \dfrac{{Rr}}{{\sqrt {{R^2} - {r^2}} }}{\rm{d}}r{\rm{d}}\theta $ Write $t = {R^2} - {r^2}$. So, $dt = - 2rdr$. The integral becomes $Area\left( S \right) = - \dfrac{R}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{t = {b^2}}^{{a^2}} {t^{ - 1/2}}{\rm{d}}t{\rm{d}}\theta $ $ = - R\left( {2\pi } \right)\left( {{t^{1/2}}|_{{b^2}}^{{a^2}}} \right) = - 2\pi R\left( {a - b} \right)$ So, $Area\left( S \right) = 2\pi R\left( {b - a} \right)$. From Figure 22 we see that the surface area of the corresponding portion of the circumscribed cylinder is also $2\pi R\left( {b - a} \right)$. Therefore, we conclude that "the surface area of the portion of the sphere of radius $R$ between two horizontal planes $z=a$ and $z=b$ is equal to the surface area of the corresponding portion of the circumscribed cylinder". Thus proves a famous result of Archimedes.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.