Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 959: 40

Answer

(a) $Area\left( S \right) = 6\pi \left( {2\sqrt 2 - \sqrt 5 } \right)$ (b) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal S}^{} {z^{ - 1}}{\rm{d}}S = 3\pi \left( {\ln 8 - \ln 5} \right)$

Work Step by Step

(a) We can parametrize the sphere ${x^2} + {y^2} + {z^2} = 9$, where the domain is ${\cal D}:1 \le {x^2} + {y^2} \le 4$ in polar coordinates: $G\left( {r,\theta } \right) = \left( {r\cos \theta ,r\sin \theta , \pm \sqrt {9 - {r^2}} } \right)$ Since $z \ge 0$, we choose $G\left( {r,\theta } \right) = \left( {r\cos \theta ,r\sin \theta ,\sqrt {9 - {r^2}} } \right)$, where the domain is ${\cal S} = \left\{ {\left( {r,\theta } \right):0 \le \theta \le 2\pi ,1 \le r \le 2} \right\}$. ${{\bf{T}}_r} = \dfrac{{\partial G}}{{\partial r}} = \left( {\cos \theta ,\sin \theta , - \dfrac{r}{{\sqrt {9 - {r^2}} }}} \right)$ ${{\bf{T}}_\theta } = \dfrac{{\partial G}}{{\partial \theta }} = \left( { - r\sin \theta ,r\cos \theta ,0} \right)$ ${\bf{N}}\left( {r,\theta } \right) = {{\bf{T}}_r} \times {{\bf{T}}_\theta } = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\cos \theta }&{\sin \theta }&{ - \dfrac{r}{{\sqrt {9 - {r^2}} }}}\\ { - r\sin \theta }&{r\cos \theta }&0 \end{array}} \right|$ ${\bf{N}}\left( {r,\theta } \right) = \dfrac{{{r^2}\cos \theta }}{{\sqrt {9 - {r^2}} }}{\bf{i}} + \dfrac{{{r^2}\sin \theta }}{{\sqrt {9 - {r^2}} }}{\bf{j}} + r{\bf{k}}$ $||{\bf{N}}\left( {r,\theta } \right)|| = \sqrt {\dfrac{{{r^4}{{\cos }^2}\theta + {r^4}{{\sin }^2}\theta + 9{r^2} - {r^4}}}{{9 - {r^2}}}} = \dfrac{{3r}}{{\sqrt {9 - {r^2}} }}$ Evaluate the area of $S$: $Area\left( S \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal S}^{} ||{\bf{N}}\left( {r,\theta } \right)||{\rm{d}}r{\rm{d}}\theta $ $Area\left( S \right) = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 1}^2 \dfrac{{3r}}{{\sqrt {9 - {r^2}} }}{\rm{d}}r{\rm{d}}\theta $ Write $t = 9 - {r^2}$. So, $dt = - 2rdr$. The integral becomes $Area\left( S \right) = - \dfrac{3}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{t = 8}^5 {t^{ - 1/2}}{\rm{d}}t{\rm{d}}\theta $ $ = - 3\left( {2\pi } \right)\left( {{t^{1/2}}|_8^5} \right) = - 6\pi \left( {\sqrt 5 - 2\sqrt 2 } \right)$ So, $Area\left( S \right) = 6\pi \left( {2\sqrt 2 - \sqrt 5 } \right)$. (b) Write $f\left( {x,y,z} \right) = {z^{ - 1}}$. Evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal S}^{} {z^{ - 1}}{\rm{d}}S$ in polar coordinates. By Eq. (7) of Theorem 1, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal S}^{} f\left( {x,y,z} \right){\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal S}^{} f\left( {G\left( {r,\theta } \right)} \right)||{\bf{N}}\left( {r,\theta } \right)||{\rm{d}}r{\rm{d}}\theta $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal S}^{} {z^{ - 1}}{\rm{d}}S = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 1}^2 \left( {\dfrac{1}{{\sqrt {9 - {r^2}} }}} \right)\left( {\dfrac{{3r}}{{\sqrt {9 - {r^2}} }}} \right){\rm{d}}r{\rm{d}}\theta $ $ = 3\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 1}^2 \dfrac{r}{{9 - {r^2}}}{\rm{d}}r{\rm{d}}\theta $ Write $t = 9 - {r^2}$, so $dt = - 2rdr$. The integral becomes $ = - \dfrac{3}{2}\left( {\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{t = 8}^5 {t^{ - 1}}{\rm{d}}t} \right)$ $ = - \dfrac{3}{2}\left( {2\pi } \right)\left( {\ln t|_8^5} \right) = - 3\pi \left( {\ln 5 - \ln 8} \right)$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal S}^{} {z^{ - 1}}{\rm{d}}S = 3\pi \left( {\ln 8 - \ln 5} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.