Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 959: 38

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = 14{{\rm{e}}^7} - 6{{\rm{e}}^4} + 2{{\rm{e}}^3} - 10$

Work Step by Step

Write $f\left( {x,y,z} \right) = z{{\rm{e}}^{2x + y}}$. From Figure 20 we see that there are six faces that build up the total surface of the box. So, the integral of $z{{\rm{e}}^{2x + y}}$ over the surface of the box is equal to $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {x,y} \right)||{\rm{d}}x{\rm{d}}y + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_2}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {x,y} \right)||{\rm{d}}x{\rm{d}}y$ $ + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_3}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {x,z} \right)||{\rm{d}}x{\rm{d}}z + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_4}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {x,z} \right)||{\rm{d}}x{\rm{d}}z$ $ + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_5}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {y,z} \right)||{\rm{d}}y{\rm{d}}z + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_6}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {y,z} \right)||{\rm{d}}y{\rm{d}}z$ 1. $z=0$ (the $xy$-plane), $||{\bf{N}}\left( {x,y} \right)|| = || - {\bf{k}}|| = 1$ Since $z=0$, so $f\left( {x,y,z} \right) = 0$. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}y = 0$ 2. $z=4$, $f\left( {x,y,4} \right) = 4{{\rm{e}}^{2x + y}}$, $||{\bf{N}}\left( {x,y} \right)|| = ||{\bf{k}}|| = 1$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_2}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {x,y} \right)||{\rm{d}}x{\rm{d}}y = 4\mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 0}^3 {{\rm{e}}^{2x + y}}{\rm{d}}x{\rm{d}}y$ $ = 4\mathop \smallint \limits_{x = 0}^2 {{\rm{e}}^{2x}}{\rm{d}}x\mathop \smallint \limits_{y = 0}^3 {{\rm{e}}^y}{\rm{d}}x{\rm{d}}y = 4\cdot\frac{1}{2}\left( {{{\rm{e}}^{2x}}|_0^2} \right)\left( {{{\rm{e}}^y}|_0^3} \right)$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_2}}^{} f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}y = 2\left( {{{\rm{e}}^4} - 1} \right)\left( {{{\rm{e}}^3} - 1} \right)$ 3. $y=0$ (the $xz$-plane), $f\left( {x,0,z} \right) = z{{\rm{e}}^{2x}}$, $||{\bf{N}}\left( {x,z} \right)|| = || - {\bf{j}}|| = 1$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_3}}^{} f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}z = \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{z = 0}^4 z{{\rm{e}}^{2x}}{\rm{d}}x{\rm{d}}z$ $ = \mathop \smallint \limits_{x = 0}^2 {{\rm{e}}^{2x}}{\rm{d}}x\mathop \smallint \limits_{z = 0}^4 z{\rm{d}}z = \frac{1}{2}\left( {{{\rm{e}}^{2x}}|_0^2} \right)\left( {\frac{1}{2}{z^2}|_0^4} \right)$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_3}}^{} f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}z = 4\left( {{{\rm{e}}^4} - 1} \right)$ 4. $y=3$, $f\left( {x,3,z} \right) = z{{\rm{e}}^{2x + 3}}$, $||{\bf{N}}\left( {x,z} \right)|| = ||{\bf{j}}|| = 1$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_4}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {x,z} \right)||{\rm{d}}x{\rm{d}}z = \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{z = 0}^4 z{{\rm{e}}^{2x + 3}}{\rm{d}}x{\rm{d}}z$ $ = {{\rm{e}}^3}\mathop \smallint \limits_{x = 0}^2 {{\rm{e}}^{2x}}{\rm{d}}x\mathop \smallint \limits_{z = 0}^4 z{\rm{d}}z = \frac{{{{\rm{e}}^3}}}{2}\left( {{{\rm{e}}^{2x}}|_0^2} \right)\left( {\frac{1}{2}{z^2}|_0^4} \right)$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_4}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {x,z} \right)||{\rm{d}}x{\rm{d}}z = 4{{\rm{e}}^3}\left( {{{\rm{e}}^4} - 1} \right)$ 5. $x=0$ (the $yz$-plane), $f\left( {0,y,z} \right) = z{{\rm{e}}^y}$, $||{\bf{N}}\left( {y,z} \right)|| = || - {\bf{i}}|| = 1$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_5}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {y,z} \right)||{\rm{d}}y{\rm{d}}z = \mathop \smallint \limits_{y = 0}^3 \mathop \smallint \limits_{z = 0}^4 z{{\rm{e}}^y}{\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{y = 0}^3 {{\rm{e}}^y}{\rm{d}}y\mathop \smallint \limits_{z = 0}^4 z{\rm{d}}z = \left( {{{\rm{e}}^y}|_0^3} \right)\left( {\frac{1}{2}{z^2}|_0^4} \right) = 8\left( {{{\rm{e}}^3} - 1} \right)$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_5}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {y,z} \right)||{\rm{d}}y{\rm{d}}z = 8\left( {{{\rm{e}}^3} - 1} \right)$ 6. $x=2$ (the $yz$-plane), $f\left( {2,y,z} \right) = z{{\rm{e}}^{4 + y}}$, $||{\bf{N}}\left( {y,z} \right)|| = ||{\bf{i}}|| = 1$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_6}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {y,z} \right)||{\rm{d}}y{\rm{d}}z = \mathop \smallint \limits_{y = 0}^3 \mathop \smallint \limits_{z = 0}^4 z{{\rm{e}}^{4 + y}}{\rm{d}}y{\rm{d}}z$ $ = {{\rm{e}}^4}\mathop \smallint \limits_{y = 0}^3 {{\rm{e}}^y}{\rm{d}}y\mathop \smallint \limits_{z = 0}^4 z{\rm{d}}z = {{\rm{e}}^4}\left( {{{\rm{e}}^y}|_0^3} \right)\left( {\frac{1}{2}{z^2}|_0^4} \right) = 8{{\rm{e}}^4}\left( {{{\rm{e}}^3} - 1} \right)$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_6}}^{} f\left( {x,y,z} \right)||{\bf{N}}\left( {y,z} \right)||{\rm{d}}y{\rm{d}}z = 8{{\rm{e}}^4}\left( {{{\rm{e}}^3} - 1} \right)$ We add all these integral to get the integral of $z{{\rm{e}}^{2x + y}}$ over the surface of the box: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S$ $ = 0 + 2\left( {{{\rm{e}}^4} - 1} \right)\left( {{{\rm{e}}^3} - 1} \right) + 4\left( {{{\rm{e}}^4} - 1} \right) + 4{{\rm{e}}^3}\left( {{{\rm{e}}^4} - 1} \right) + 8\left( {{{\rm{e}}^3} - 1} \right) + 8{{\rm{e}}^4}\left( {{{\rm{e}}^3} - 1} \right)$ $ = 14{{\rm{e}}^7} - 6{{\rm{e}}^4} + 2{{\rm{e}}^3} - 10$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S = 14{{\rm{e}}^7} - 6{{\rm{e}}^4} + 2{{\rm{e}}^3} - 10$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.