Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 823: 46

Answer

The maximum volume is $V\left( {\frac{1}{3},\frac{2}{3}} \right) = \frac{2}{9}$. The size of the box when the volume is maximum: $\left( {x,y,z} \right) = \left( {\frac{1}{3},\frac{2}{3},1} \right)$.

Work Step by Step

Step 1. Determine the function to be maximized Let $P = \left( {x,y,z} \right)$ be the corner of the box touching the front face of the tetrahedron (see the figure attached). Thus, the the box has volume $V = xyz$. Using $x + \frac{1}{2}y + \frac{1}{3}z = 1$ we obtain the volume as a function of $x$ and $y$: $V\left( {x,y} \right) = xy\left( {3 - 3x - \frac{3}{2}y} \right) = - 3{x^2}y + 3xy - \frac{3}{2}x{y^2}$ Let the domain $D$ be the triangle $\vartriangle OAB$ in the $xy$-plane. So, $D = \left\{ {\left( {x,y} \right)|x,y \ge 0,x + \frac{1}{2}y \le 1} \right\}$ Since $D$ is closed and bounded, by Theorem 3, the maximum value occurs either at the critical points in the interior of $D$ or at points on the boundary of $D$. Step 2. Examine the critical points We have $V\left( {x,y} \right) = - 3{x^2}y + 3xy - \frac{3}{2}x{y^2}$ on the domain $D = \left\{ {\left( {x,y} \right)|x,y \ge 0,x + \frac{1}{2}y \le 1} \right\}$. The partial derivatives are ${V_x} = - 6xy + 3y - \frac{3}{2}{y^2}$ ${V_y} = - 3{x^2} + 3x - 3xy$ To find the critical points we solve the equations ${V_x} = 0$ and ${V_y} = 0$: ${V_x} = - 6xy + 3y - \frac{3}{2}{y^2} = 0$ ${V_y} = - 3{x^2} + 3x - 3xy = 0$ We get $y\left( { - 6x + 3 - \frac{3}{2}y} \right) = 0$ $x\left( { - 3x + 3 - 3y} \right) = 0$ From the first equation we get $y=0$. Substituting it in the second equation gives $x=1$. From the second equation we get $x=0$. Substituting it in the first equation gives $y=2$. From the set of equations: $ - 6x + 3 - \frac{3}{2}y = 0$ and $ - 3x + 3 - 3y = 0$ we obtain $x = \frac{1}{3}$ and $y = \frac{2}{3}$. So, the critical points are $\left( {0,0} \right)$, $\left( {1,0} \right)$, $\left( {0,2} \right)$ and $\left( {\frac{1}{3},\frac{2}{3}} \right)$. The corresponding extreme values are $\begin{array}{*{20}{c}} {{\rm{Critical{\ }points}}}&{V\left( {x,y} \right)}\\ {\left( {0,0} \right)}&0\\ {\left( {1,0} \right)}&0\\ {\left( {0,2} \right)}&0\\ {\left( {\frac{1}{3},\frac{2}{3}} \right)}&{\frac{2}{9}} \end{array}$ Step 2. Check the boundaries We restrict the volume $V$ along the edges and find the maximum values. The results are given in the following table: $\begin{array}{*{20}{c}} {}&{{\rm{Restriction{\ }of}}}\\ {{\rm{Edge}}}&{V\left( {x,y} \right){\rm{to{\ }Edge}}}\\ {Bottom:0 \le x \le 1,y = 0}&{h\left( x \right) = V\left( {x,0} \right) = 0}\\ {Left:x = 0,0 \le y \le 2}&{m\left( y \right) = V\left( {0,y} \right) = 0}\\ {Right:0 \le x \le 1,y = 2 - 2x}&{n\left( x \right) = V\left( {x,2 - 2x} \right) = 0} \end{array}$ We have $V=0$ for all points on the boundary of $D$. Step 3. Compare the results Comparing the results from Step 1 and Step 2 we obtain the maximum volume of $V\left( {\frac{1}{3},\frac{2}{3}} \right) = \frac{2}{9}$. Using $x + \frac{1}{2}y + \frac{1}{3}z = 1$, we obtain the size of the box when the volume is maximum: $\left( {x,y,z} \right) = \left( {\frac{1}{3},\frac{2}{3},1} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.