Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 823: 40

Answer

The global minimum is $f\left( {0,0} \right) = 0$ and the global maximum is $f\left( {0,1} \right) = 2$.

Work Step by Step

We have $f\left( {x,y} \right) = {x^3} + {x^2}y + 2{y^2}$ and the domain: $x,y \ge 0$, $x + y \le 1$. Step 1. Find the critical points on the domain and evaluate $f$ at these points The partial derivatives are ${f_x} = 3{x^2} + 2xy$, ${\ \ \ }$ ${f_y} = {x^2} + 4y$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 3{x^2} + 2xy = 0$, ${\ \ }$ ${f_y} = {x^2} + 4y = 0$ From the second equation we get $y = - \frac{1}{4}{x^2}$. Substituting it in the first equation gives $3{x^2} - \frac{1}{2}{x^3} = 0$ ${x^2}\left( {3 - \frac{1}{2}x} \right) = 0$ The solutions are $x=0$, $x=6$. So, the critical points are $\left( {0,0} \right)$ and $\left( {6, - 9} \right)$. However, the critical point $\left( {6, - 9} \right)$ is not in our domain. Thus, for the critical point $\left( {0,0} \right)$ in our domain, we get $f\left( {0,0} \right) = 0$. Step 2. Check the boundaries We restrict the function $f$ along the edges and find the minimum and maximum values. The results are given in the following table: $\begin{array}{*{20}{c}} {}&{{\rm{Restriction{\ }of}}}&{}&{f\left( {x,y} \right)}&{f\left( {x,y} \right)}\\ {{\rm{Edge}}}&{f\left( {x,y} \right){\rm{to{\ }Edge}}}&{}&{{\rm{min}}{\rm{.}}}&{{\rm{max}}{\rm{.}}}\\ {Bottom:y = 0,0 \le x \le 1}&{g\left( x \right) = f\left( {x,0} \right) = {x^3}}&{g' = 3{x^2}}&0&1\\ {Left:x = 0,0 \le y \le 1}&{m\left( y \right) = f\left( {0,y} \right) = 2{y^2}}&{m' = 4y}&0&2\\ {Right:0 \le x \le 1,x + y = 1}&{n\left( x \right) = f\left( {x, - x + 1} \right)}&{n' = 6x - 4}&{\frac{2}{3}}&2\\ {}&{\ \ \ \ \ \ \ }{ = 3{x^2} - 4x + 2} \end{array}$ Step 3. Compare the results Comparing the value of $f$ in Step 1 and the values in this table we obtain the global minimum $f\left( {0,0} \right) = 0$ and the global maximum $f\left( {0,1} \right) = 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.