Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 823: 41

Answer

The global minimum is $f\left( {0,0} \right) = 0$ and the global maximum is $f\left( {1,0} \right) = f\left( {0,1} \right) = 1$.

Work Step by Step

We have $f\left( {x,y} \right) = {x^2} + x{y^3} + {y^2}$ and the domain: $x,y \ge 0$, $x + y \le 1$. Step 1. Find the critical points on the domain and evaluate $f$ at these points The partial derivatives are ${f_x} = 2x + {y^3}$, ${\ \ \ }$ ${f_y} = 3x{y^2} + 2y$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 2x + {y^3} = 0$, ${\ \ }$ ${f_y} = 3x{y^2} + 2y = 0$ From the first equation we get $x = - \frac{1}{2}{y^3}$. Substituting it in the second equation gives $ - \frac{3}{2}{y^5} + 2y = 0$ $y\left( {2 - \frac{3}{2}{y^4}} \right) = 0$ $y=0$, ${\ \ \ }$ ${y^4} - \frac{4}{3} = 0$ We can write the second equation as $\left( {{y^2} - \frac{2}{{\sqrt 3 }}} \right)\left( {{y^2} + \frac{2}{{\sqrt 3 }}} \right) = 0$ For real solutions, we obtain $y=0$, $y = \pm {\left( {\frac{2}{{\sqrt 3 }}} \right)^{1/2}} = \pm \left( {\frac{{\sqrt 2 }}{{{3^{1/4}}}}} \right)$. So, the critical points are $\left( {0,0} \right)$, $\left( { - \frac{{\sqrt 2 }}{{{3^{3/4}}}},\frac{{\sqrt 2 }}{{{3^{1/4}}}}} \right) \simeq \left( { - 0.62,1.07} \right)$ and $\left( {\frac{{\sqrt 2 }}{{{3^{3/4}}}}, - \frac{{\sqrt 2 }}{{{3^{1/4}}}}} \right) \simeq \left( {0.62, - 1.07} \right)$. However, only the critical point $\left( {0,0} \right)$ is in the interior of our domain. The extreme value of $f$ corresponding to $\left( {0,0} \right)$ is $f\left( {0,0} \right) = 0$. Step 2. Check the boundaries We restrict the function $f$ along the edges and find the minimum and maximum values. The results are given in the following table: $\begin{array}{*{20}{c}} {}&{{\rm{Restriction{\ }of}}}&{f\left( {x,y} \right)}&{f\left( {x,y} \right)}\\ {{\rm{Edge}}}&{f\left( {x,y} \right){\rm{to{\ }Edge}}}&{{\rm{min}}{\rm{.}}}&{{\rm{max}}{\rm{.}}}\\ {Bottom:y = 0,0 \le x \le 1}&{g\left( x \right) = f\left( {x,0} \right) = {x^2}}&0&1\\ {Left:x = 0,0 \le y \le 1}&{m\left( y \right) = f\left( {0,y} \right) = {y^2}}&0&1\\ {Right:0 \le x \le 1,x + y = 1}&{n\left( x \right) = f\left( {x, - x + 1} \right)}&{0.55}&1\\ {}&{ = - {x^4} + 3{x^3} - {x^2} - x + 1}&{}&{} \end{array}$ Notes: - The critical point of $n\left( x \right)$ is $x \simeq 0.56$, so the extreme value $n\left( {0.56} \right) \simeq 0.55$. Step 3. Compare the results Comparing the value of $f$ in Step 1 and the values in this table we obtain the global minimum $f\left( {0,0} \right) = 0$ and the global maximum $f\left( {1,0} \right) = f\left( {0,1} \right) = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.