Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 823: 42

Answer

The global minimum is $f\left( {1,1} \right) = - 1$ and the global maximum is $f\left( {1,0} \right) = f\left( {0,1} \right) = 1$.

Work Step by Step

We have $f\left( {x,y} \right) = {x^3} + {y^3} - 3xy$ and the domain is the square $0 \le x \le 1$, $0 \le y \le 1$. Step 1. Find the critical points on the domain and evaluate $f$ at these points The partial derivatives are ${f_x} = 3{x^2} - 3y$, ${\ \ \ }$ ${f_y} = 3{y^2} - 3x$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 3{x^2} - 3y = 0$, ${\ \ }$ ${f_y} = 3{y^2} - 3x = 0$ From the first equation we get $y = {x^2}$. Substituting it in the second equation gives $3{x^4} - 3x = 0$ $x\left( {{x^3} - 1} \right) = 0$ The solutions are $x=0$, $x=1$. So, the critical points of $f$ are $\left( {0,0} \right)$ and $\left( {1,1} \right)$. The values of $f$ corresponding to these critical points are $f\left( {0,0} \right) = 0$ and $f\left( {1,1} \right) = - 1$, respectively. Step 2. Check the boundaries We restrict the function $f$ along the edges and find the minimum and maximum values. The results are given in the following table: $\begin{array}{*{20}{c}} {}&{{\rm{Restriction{\ }of}}}&{f\left( {x,y} \right)}&{f\left( {x,y} \right)}\\ {{\rm{Edge}}}&{f\left( {x,y} \right){\rm{to{\ }Edge}}}&{{\rm{min}}{\rm{.}}}&{{\rm{max}}{\rm{.}}}\\ {Bottom:y = 0,0 \le x \le 1}&{g\left( x \right) = f\left( {x,0} \right) = {x^3}}&0&1\\ {Top:y = 1,0 \le x \le 1}&{h\left( x \right) = f\left( {x,1} \right) = {x^3} - 3x + 1}&{ - 1}&1\\ {Left:x = 0,0 \le y \le 1}&{m\left( y \right) = f\left( {0,y} \right) = {y^3}}&0&1\\ {Right:x = 1,0 \le y \le 1}&{n\left( y \right) = f\left( {1,y} \right) = {y^3} - 3y + 1}&{ - 1}&1 \end{array}$ Step 3. Compare the results Comparing the values of $f$ in Step 1 and the values in this table we obtain the global minimum $f\left( {1,1} \right) = - 1$ and the global maximum $f\left( {1,0} \right) = f\left( {0,1} \right) = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.