Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 8

Answer

The critical points and their nature: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{6x}&{6y}&{ - 1}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&0&0&{ - 1}&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{1}{3},\frac{1}{3}} \right)}&2&2&{ - 1}&3&{{\rm{local{\ }minimum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = {x^3} - xy + {y^3}$. The partial derivatives are ${f_x} = 3{x^2} - y$, ${\ \ \ }$ ${f_y} = - x + 3{y^2}$ ${f_{xx}} = 6x$, ${\ \ }$ ${f_{yy}} = 6y$, ${\ \ }$ ${f_{xy}} = - 1$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 3{x^2} - y = 0$, ${\ \ \ }$ ${f_y} = - x + 3{y^2} = 0$ From the first equation we get $y = 3{x^2}$. Substituting it in the second equation gives $ - x + 27{x^4} = 0$ $x\left( {27{x^3} - 1} \right) = 0$ The solutions are $x = 0$, $x = \frac{1}{3}$. So, there are two critical points: $\left( {0,0} \right)$ and $\left( {\frac{1}{3},\frac{1}{3}} \right)$. Next, we use the Second Derivative Test to determine the nature of the critical points. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{6x}&{6y}&{ - 1}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&0&0&{ - 1}&{ - 1}&{{\rm{saddle{\ }point}}}\\ {\left( {\frac{1}{3},\frac{1}{3}} \right)}&2&2&{ - 1}&3&{{\rm{local{\ }minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.