Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 15

Answer

The critical points and their nature: $\begin{array}{*{20}{c}} {{\rm{Critical Point}}}&{{\rm{Type}}}\\ {\left( {0,0} \right)}&{{\rm{saddle{\ } point}}}\\ {\left( {\sqrt {\frac{1}{2}} ,\sqrt {\frac{1}{2}} } \right)}&{{\rm{local{\ } maximum}}}\\ {\left( {\sqrt {\frac{1}{2}} , - \sqrt {\frac{1}{2}} } \right)}&{{\rm{local{\ } minimum}}}\\ {\left( { - \sqrt {\frac{1}{2}} ,\sqrt {\frac{1}{2}} } \right)}&{{\rm{local{\ } minimum}}}\\ {\left( { - \sqrt {\frac{1}{2}} , - \sqrt {\frac{1}{2}} } \right)}&{{\rm{local{\ } maximum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = xy{{\rm{e}}^{ - {x^2} - {y^2}}}$. The partial derivatives are ${f_x} = y{{\rm{e}}^{ - {x^2} - {y^2}}} - 2{x^2}y{{\rm{e}}^{ - {x^2} - {y^2}}}$ $ = y\left( {1 - 2{x^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ ${f_y} = x{{\rm{e}}^{ - {x^2} - {y^2}}} - 2x{y^2}{{\rm{e}}^{ - {x^2} - {y^2}}}$ $ = x\left( {1 - 2{y^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ ${f_{xx}} = - 4xy{{\rm{e}}^{ - {x^2} - {y^2}}} - 2xy\left( {1 - 2{x^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ $ = \left( { - 4xy - 2xy\left( {1 - 2{x^2}} \right)} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ $ = \left( { - 6xy + 4{x^3}y} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ ${f_{yy}} = - 4xy{{\rm{e}}^{ - {x^2} - {y^2}}} - 2xy\left( {1 - 2{y^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ $ = \left( { - 4xy - 2xy\left( {1 - 2{y^2}} \right)} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ $ = \left( { - 6xy + 4x{y^3}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ ${f_{xy}} = \left( {1 - 2{x^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}} - 2{y^2}\left( {1 - 2{x^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ $ = \left( {1 - 2{x^2}} \right)\left( {1 - 2{y^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = y\left( {1 - 2{x^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}} = 0$ ${f_y} = x\left( {1 - 2{y^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}} = 0$ Since ${{\rm{e}}^{ - {x^2} - {y^2}}} \ne 0$, the solutions of the first equation are $y=0$, $x = \pm \sqrt {\frac{1}{2}} $. Substituting $y=0$ in the second equation gives $x=0$. Substituting $x = \sqrt {\frac{1}{2}} $ in the second equation gives $y = \pm \sqrt {\frac{1}{2}} $. Substituting $x = - \sqrt {\frac{1}{2}} $ in the second equation gives $y = \pm \sqrt {\frac{1}{2}} $. So, the critical points are $\left( {0,0} \right)$, $\left( {\sqrt {\frac{1}{2}} ,\sqrt {\frac{1}{2}} } \right)$, $\left( {\sqrt {\frac{1}{2}} , - \sqrt {\frac{1}{2}} } \right)$, $\left( { - \sqrt {\frac{1}{2}} ,\sqrt {\frac{1}{2}} } \right)$, $\left( { - \sqrt {\frac{1}{2}} , - \sqrt {\frac{1}{2}} } \right)$. Recall from previous results: ${f_{xx}} = \left( { - 6xy + 4{x^3}y} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ ${f_{yy}} = \left( { - 6xy + 4x{y^3}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ ${f_{xy}} = \left( {1 - 2{x^2}} \right)\left( {1 - 2{y^2}} \right){{\rm{e}}^{ - {x^2} - {y^2}}}$ We evaluate ${f_{xx}}$, ${f_{yy}}$ and ${f_{xy}}$ at the corresponding critical points and use the Second Derivative Test to determine the nature of the critical points. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\rm{CriticalPoint}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ {\left( {0,0} \right)}&0&0&1&{ - 1}&{{\rm{saddle{\ } point}}}\\ {\left( {\sqrt {\frac{1}{2}} ,\sqrt {\frac{1}{2}} } \right)}&{ - \frac{2}{{\rm{e}}}}&{ - \frac{2}{{\rm{e}}}}&0&{\frac{4}{{{{\rm{e}}^2}}}}&{{\rm{local{\ } maximum}}}\\ {\left( {\sqrt {\frac{1}{2}} , - \sqrt {\frac{1}{2}} } \right)}&{\frac{2}{{\rm{e}}}}&{\frac{2}{{\rm{e}}}}&0&{\frac{4}{{{{\rm{e}}^2}}}}&{{\rm{local{\ } minimum}}}\\ {\left( { - \sqrt {\frac{1}{2}} ,\sqrt {\frac{1}{2}} } \right)}&{\frac{2}{{\rm{e}}}}&{\frac{2}{{\rm{e}}}}&0&{\frac{4}{{{{\rm{e}}^2}}}}&{{\rm{local{\ } minimum}}}\\ {\left( { - \sqrt {\frac{1}{2}} , - \sqrt {\frac{1}{2}} } \right)}&{ - \frac{2}{{\rm{e}}}}&{ - \frac{2}{{\rm{e}}}}&0&{\frac{4}{{{{\rm{e}}^2}}}}&{{\rm{local{\ } maximum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.