Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 12

Answer

The critical points and their nature: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}\\ {{\rm{Point}}}&{6x}&{12{y^2} - 4}&0\\ {\left( {\sqrt 2 ,0} \right)}&{6\sqrt 2 }&{ - 4}&0\\ {\left( { - \sqrt 2 ,0} \right)}&{ - 6\sqrt 2 }&{ - 4}&0\\ {\left( {\sqrt 2 ,1} \right)}&{6\sqrt 2 }&8&0\\ {\left( {\sqrt 2 , - 1} \right)}&{6\sqrt 2 }&8&0\\ {\left( { - \sqrt 2 ,1} \right)}&{ - 6\sqrt 2 }&8&0\\ {\left( { - \sqrt 2 , - 1} \right)}&{ - 6\sqrt 2 }&8&0 \end{array}\begin{array}{*{20}{c}} {{\rm{Discriminant}}}&{}\\ {D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ { - 24\sqrt 2 }&{{\rm{saddle{\ }point}}}\\ {24\sqrt 2 }&{{\rm{local{\ }maximum}}}\\ {48\sqrt 2 }&{{\rm{local{\ }minimum}}}\\ {48\sqrt 2 }&{{\rm{local{\ }minimum}}}\\ { - 48\sqrt 2 }&{{\rm{saddle{\ }point}}}\\ { - 48\sqrt 2 }&{{\rm{saddle{\ }point}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = {x^3} + {y^4} - 6x - 2{y^2}$. The partial derivatives are ${f_x} = 3{x^2} - 6$, ${\ \ \ }$ ${f_y} = 4{y^3} - 4y$ ${f_{xx}} = 6x$, ${\ \ }$ ${f_{yy}} = 12{y^2} - 4$, ${\ \ }$ ${f_{xy}} = 0$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 3{x^2} - 6 = 0$, ${\ \ \ }$ ${f_y} = 4{y^3} - 4y = 0$ From the first equation we obtain the solutions $x = \pm \sqrt 2 $. From the second equation we have $4y\left( {{y^2} - 1} \right) = 0$ The solutions are $y=0$, $y = \pm 1$. So, the critical points are $\left( {\sqrt 2 ,0} \right)$, $\left( { - \sqrt 2 ,0} \right)$, $\left( {\sqrt 2 ,1} \right)$, $\left( {\sqrt 2 , - 1} \right)$, $\left( { - \sqrt 2 ,1} \right)$, $\left( { - \sqrt 2 , - 1} \right)$. Next, we use the Second Derivative Test to determine the nature of the critical points. The results are listed in the following table: $\begin{array}{*{20}{c}} {{\rm{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}\\ {{\rm{Point}}}&{6x}&{12{y^2} - 4}&0\\ {\left( {\sqrt 2 ,0} \right)}&{6\sqrt 2 }&{ - 4}&0\\ {\left( { - \sqrt 2 ,0} \right)}&{ - 6\sqrt 2 }&{ - 4}&0\\ {\left( {\sqrt 2 ,1} \right)}&{6\sqrt 2 }&8&0\\ {\left( {\sqrt 2 , - 1} \right)}&{6\sqrt 2 }&8&0\\ {\left( { - \sqrt 2 ,1} \right)}&{ - 6\sqrt 2 }&8&0\\ {\left( { - \sqrt 2 , - 1} \right)}&{ - 6\sqrt 2 }&8&0 \end{array}\begin{array}{*{20}{c}} {{\rm{Discriminant}}}&{}\\ {D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\rm{Type}}}\\ { - 24\sqrt 2 }&{{\rm{saddle{\ }point}}}\\ {24\sqrt 2 }&{{\rm{local{\ }maximum}}}\\ {48\sqrt 2 }&{{\rm{local{\ }minimum}}}\\ {48\sqrt 2 }&{{\rm{local{\ }minimum}}}\\ { - 48\sqrt 2 }&{{\rm{saddle{\ }point}}}\\ { - 48\sqrt 2 }&{{\rm{saddle{\ }point}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.