Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.7 Optimization in Several Variables - Exercises - Page 822: 7

Answer

The critical point and its nature: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&2&2&{ - 1}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( { - \frac{2}{3}, - \frac{1}{3}} \right)}&2&2&{ - 1}&3&{{\rm{local{\ }minimum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = {x^2} + {y^2} - xy + x$. The partial derivatives are ${f_x} = 2x - y + 1$, ${\ \ \ }$ ${f_y} = 2y - x$ ${f_{xx}} = 2$, ${\ \ }$ ${f_{yy}} = 2$, ${\ \ }$ ${f_{xy}} = - 1$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 2x - y + 1 = 0$, ${\ \ }$ ${f_y} = 2y - x = 0$ From the second equation we get $x=2y$. Substituting it in the first equation gives $y = - \frac{1}{3}$. So, there is only one critical point at $\left( { - \frac{2}{3}, - \frac{1}{3}} \right)$. Next, we use the Second Derivative Test to determine the nature of the critical point $\left( { - \frac{2}{3}, - \frac{1}{3}} \right)$. Since ${f_{xx}} > 0$ and the discriminant $D = {f_{xx}}{f_{yy}} - {f_{xy}}^2 > 0$, it is a local minimum (see the table below). $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&2&2&{ - 1}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( { - \frac{2}{3}, - \frac{1}{3}} \right)}&2&2&{ - 1}&3&{{\rm{local{\ }minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.