Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 810: 48

Answer

Using the result from Exercise 47, we prove that $\frac{{{\partial ^2}g}}{{\partial {x_1}^2}} + ... + \frac{{{\partial ^2}g}}{{\partial {x_n}^2}} = {g_{rr}} + \frac{{n - 1}}{r}{g_r}$

Work Step by Step

Let $r = \sqrt {{x_1}^2 + ... + {x_n}^2} $ and let $g\left( r \right)$ be a function of $r$ as is given in Exercise 47. From Exercise 47, we obtain $\frac{{{\partial ^2}g}}{{\partial {x_i}^2}} = \frac{{{x_i}^2}}{{{r^2}}}{g_{rr}} + \frac{{{r^2} - {x_i}^2}}{{{r^3}}}{g_r}$, ${\ \ }$ for $i = 1,2,...,n$ So, $\frac{{{\partial ^2}g}}{{\partial {x_1}^2}} + ... + \frac{{{\partial ^2}g}}{{\partial {x_n}^2}} = \left( {\frac{{{x_1}^2}}{{{r^2}}} + ... + \frac{{{x_n}^2}}{{{r^2}}}} \right){g_{rr}}$ ${\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$ $ + \left( {\frac{{{r^2} - {x_1}^2}}{{{r^3}}} + ... + \frac{{{r^2} - {x_n}^2}}{{{r^3}}}} \right){g_r}$ ${\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$ $ = \frac{{{x_1}^2 + ... + {x_n}^2}}{{{r^2}}}{g_{rr}} + \frac{{n{r^2} - \left( {{x_1}^2 + ... + {x_n}^2} \right)}}{{{r^3}}}{g_r}$ Since ${r^2} = {x_1}^2 + ... + {x_n}^2$, so $\frac{{{\partial ^2}g}}{{\partial {x_1}^2}} + ... + \frac{{{\partial ^2}g}}{{\partial {x_n}^2}} = {g_{rr}} + \frac{{n{r^2} - {r^2}}}{{{r^3}}}{g_r}$ Hence, $\frac{{{\partial ^2}g}}{{\partial {x_1}^2}} + ... + \frac{{{\partial ^2}g}}{{\partial {x_n}^2}} = {g_{rr}} + \frac{{n - 1}}{r}{g_r}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.