Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 810: 38

Answer

(a) Using the Chain Rule we obtain $\frac{{dy}}{{dx}} = - \frac{{4y}}{{3{y^2} + 4x}}$ (b) $g'\left( 1 \right) = 3$

Work Step by Step

(a) We have ${y^3} + 4xy = 16$. Let $y = r\left( x \right)$ be a function of $x$ that solves the equation ${y^3} + 4xy = 16$. Write $f\left( {x,y} \right) = {y^3} + 4xy = 16$. The partial derivatives of $f$ are $\frac{{\partial f}}{{\partial x}} = 4y$, ${\ \ \ }$ $\frac{{\partial f}}{{\partial y}} = 3{y^2} + 4x$ Using the Chain Rule we get $\frac{{\partial f}}{{\partial x}}\frac{{dx}}{{dx}} + \frac{{\partial f}}{{\partial y}}\frac{{dy}}{{dx}} = 0$ $\frac{{\partial f}}{{\partial x}} + \frac{{\partial f}}{{\partial y}}\frac{{dy}}{{dx}} = 0$ $4y + \left( {3{y^2} + 4x} \right)\frac{{dy}}{{dx}} = 0$ Hence, $\frac{{dy}}{{dx}} = - \frac{{4y}}{{3{y^2} + 4x}}$. (b) We have $g\left( x \right) = f\left( {x,r\left( x \right)} \right)$ and ${f_x}\left( {1,2} \right) = 8$, ${\ \ \ }$ ${f_y}\left( {1,2} \right) = 10$ Using the Chain Rule we calculate $g'\left( 1 \right)$: $g'\left( x \right) = \frac{{\partial f}}{{\partial x}}\frac{{dx}}{{dx}} + \frac{{\partial f}}{{\partial y}}\frac{{dy}}{{dx}} = \frac{{\partial f}}{{\partial x}} + \frac{{\partial f}}{{\partial y}}\frac{{dy}}{{dx}}$ $g'\left( x \right) = {f_x} + \left( { - \frac{{4y}}{{3{y^2} + 4x}}} \right){f_y}$ Since $y = r\left( x \right)$ and $r\left( 1 \right) = 2$, so at $\left( {x,y} \right) = \left( {1,2} \right)$, we obtain $g'\left( 1 \right) = 8 - \frac{{4\cdot2}}{{3\cdot{2^2} + 4\cdot1}}\cdot10$ $g'\left( 1 \right) = 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.