Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 810: 39

Answer

$\frac{{\partial P}}{{\partial T}} = \frac{{nR}}{{V - nb}}$ $\frac{{\partial V}}{{\partial P}} = \frac{{nb{V^3} - {V^4}}}{{P{V^3} + 2ab{n^3} - a{n^2}V}}$

Work Step by Step

We have the equation $\left( {P + \frac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) = nRT$. Write $F\left( {T,P,V} \right) \equiv \left( {P + \frac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) - nRT$. The partial derivatives are $\frac{{\partial F}}{{\partial T}} = - nR$, ${\ \ }$ $\frac{{\partial F}}{{\partial P}} = V - nb$ $\frac{{\partial F}}{{\partial V}} = - \frac{{2a{n^2}}}{{{V^3}}}\left( {V - nb} \right) + P + \frac{{a{n^2}}}{{{V^2}}}$ $ = P + \frac{{2ab{n^3}}}{{{V^3}}} - \frac{{a{n^2}}}{{{V^2}}}$ 1. Calculate $\frac{{\partial P}}{{\partial T}}$ Suppose that $P$ is defined implicitly as a function of $P$ and $V$ by the equation $F\left( {T,P,V} \right) = \left( {P + \frac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) - nRT = 0$ Using the Chain Rule we differentiate $F$ with respect to $T$: $\frac{{\partial F}}{{\partial T}}\frac{{\partial T}}{{\partial T}} + \frac{{\partial F}}{{\partial P}}\frac{{\partial P}}{{\partial T}} + \frac{{\partial F}}{{\partial V}}\frac{{\partial V}}{{\partial T}} = 0$ Since $\frac{{\partial T}}{{\partial T}} = 1$, $\frac{{\partial V}}{{\partial T}} = 0$, so $\frac{{\partial F}}{{\partial T}} + \frac{{\partial F}}{{\partial P}}\frac{{\partial P}}{{\partial T}} = 0$ $\frac{{\partial P}}{{\partial T}} = - \frac{{\partial F}}{{\partial T}}/\frac{{\partial F}}{{\partial P}}$ $\frac{{\partial P}}{{\partial T}} = \frac{{nR}}{{V - nb}}$ 2. Calculate $\frac{{\partial V}}{{\partial P}}$ Suppose that $V$ is defined implicitly as a function of $T$ and $P$ by the equation $F\left( {T,P,V} \right) = \left( {P + \frac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) - nRT = 0$ Using the Chain Rule we differentiate $F$ with respect to $P$: $\frac{{\partial F}}{{\partial T}}\frac{{\partial T}}{{\partial P}} + \frac{{\partial F}}{{\partial P}}\frac{{\partial P}}{{\partial P}} + \frac{{\partial F}}{{\partial V}}\frac{{\partial V}}{{\partial P}} = 0$ Since $\frac{{\partial P}}{{\partial P}} = 1$, $\frac{{\partial T}}{{\partial P}} = 0$, so $\frac{{\partial F}}{{\partial P}} + \frac{{\partial F}}{{\partial V}}\frac{{\partial V}}{{\partial P}} = 0$ $\frac{{\partial V}}{{\partial P}} = - \frac{{\partial F}}{{\partial P}}/\frac{{\partial F}}{{\partial V}}$ $\frac{{\partial V}}{{\partial P}} = - \frac{{V - nb}}{{P + \frac{{2ab{n^3}}}{{{V^3}}} - \frac{{a{n^2}}}{{{V^2}}}}} = \frac{{nb{V^3} - {V^4}}}{{P{V^3} + 2ab{n^3} - a{n^2}V}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.