Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 810: 40

Answer

(a) Using Eq. (7) we prove the cyclic relation Eq. (10): (10) ${\ \ \ }$ ${\left( {\frac{{\partial z}}{{\partial x}}} \right)_y}{\left( {\frac{{\partial x}}{{\partial y}}} \right)_z}{\left( {\frac{{\partial y}}{{\partial z}}} \right)_x} = - 1$ (b) Eq. (10) is verified for $F\left( {x,y,z} \right) = x + y + z = 0$. (c) The cyclic relation is verified for the Ideal Gas Law.

Work Step by Step

(a) Recall Eq. (7): ${\left( {\frac{{\partial z}}{{\partial x}}} \right)_y} = - \frac{{{F_x}}}{{{F_z}}}$, ${\ \ \ }$ ${\left( {\frac{{\partial z}}{{\partial y}}} \right)_x} = - \frac{{{F_y}}}{{{F_z}}}$ By symmetry, we obtain ${\left( {\frac{{\partial x}}{{\partial y}}} \right)_z} = - \frac{{{F_y}}}{{{F_x}}}$ ${\ \ }$ and ${\ \ }$ ${\left( {\frac{{\partial y}}{{\partial z}}} \right)_x} = - \frac{{{F_z}}}{{{F_y}}}$ Thus, ${\left( {\frac{{\partial z}}{{\partial x}}} \right)_y}{\left( {\frac{{\partial x}}{{\partial y}}} \right)_z}{\left( {\frac{{\partial y}}{{\partial z}}} \right)_x} = \left( { - \frac{{{F_x}}}{{{F_z}}}} \right)\left( { - \frac{{{F_y}}}{{{F_x}}}} \right)\left( { - \frac{{{F_z}}}{{{F_y}}}} \right) = - 1$ Hence, the cyclic relation Eq. (10): (10) ${\ \ \ }$ ${\left( {\frac{{\partial z}}{{\partial x}}} \right)_y}{\left( {\frac{{\partial x}}{{\partial y}}} \right)_z}{\left( {\frac{{\partial y}}{{\partial z}}} \right)_x} = - 1$ (b) We have $F\left( {x,y,z} \right) = x + y + z = 0$. The partial derivatives are ${F_x} = 1$, ${\ \ }$ ${F_y} = 1$, ${\ \ }$ ${F_z} = 1$ From part (a) we obtain ${\left( {\frac{{\partial z}}{{\partial x}}} \right)_y} = - \frac{{{F_x}}}{{{F_z}}}$, ${\ \ }$ ${\left( {\frac{{\partial x}}{{\partial y}}} \right)_z} = - \frac{{{F_y}}}{{{F_x}}}$, ${\ \ }$ ${\left( {\frac{{\partial y}}{{\partial z}}} \right)_x} = - \frac{{{F_z}}}{{{F_y}}}$ So, we have ${\left( {\frac{{\partial z}}{{\partial x}}} \right)_y} = - 1$, ${\ \ }$ ${\left( {\frac{{\partial x}}{{\partial y}}} \right)_z} = - 1$, ${\ \ }$ ${\left( {\frac{{\partial y}}{{\partial z}}} \right)_x} = - 1$ ${\left( {\frac{{\partial z}}{{\partial x}}} \right)_y}{\left( {\frac{{\partial x}}{{\partial y}}} \right)_z}{\left( {\frac{{\partial y}}{{\partial z}}} \right)_x} = - 1$ Hence, Eq. (10) is verified. (c) We have the Ideal Gas Law $PV - nRT = 0$. Write $F\left( {T,P,V} \right) \equiv PV - nRT = 0$. The partial derivatives are $\frac{{\partial F}}{{\partial T}} = {F_T} = - nR$, ${\ }$ $\frac{{\partial F}}{{\partial P}} = {F_P} = 1$, ${\ }$ $\frac{{\partial F}}{{\partial V}} = {F_V} = 1$ Using Eq. (7) we obtain ${\left( {\frac{{\partial V}}{{\partial T}}} \right)_P} = - \frac{{{F_T}}}{{{F_V}}}$, ${\ }$ ${\left( {\frac{{\partial T}}{{\partial P}}} \right)_V} = - \frac{{{F_P}}}{{{F_T}}}$, ${\ }$ ${\left( {\frac{{\partial P}}{{\partial V}}} \right)_T} = - \frac{{{F_V}}}{{{F_P}}}$ So, ${\left( {\frac{{\partial V}}{{\partial T}}} \right)_P} = nR$, ${\ }$ ${\left( {\frac{{\partial T}}{{\partial P}}} \right)_V} = \frac{1}{{nR}}$, ${\ }$ ${\left( {\frac{{\partial P}}{{\partial V}}} \right)_T} = - 1$ ${\left( {\frac{{\partial V}}{{\partial T}}} \right)_P}{\left( {\frac{{\partial T}}{{\partial P}}} \right)_V}{\left( {\frac{{\partial P}}{{\partial V}}} \right)_T} = - 1$ Hence, the cyclic relation is verified.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.