Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.3 Partial Derivatives - Exercises - Page 782: 79

Answer

We show that (a) the function $u\left( {x,y} \right) = x$ is harmonic. (b) the function $u\left( {x,y} \right) = {{\rm{e}}^x}\cos y$ is harmonic. (c) the function $u\left( {x,y} \right) = {\tan ^{ - 1}}\frac{y}{x}$ is harmonic. (d) the function $u\left( {x,y} \right) = \ln \left( {{x^2} + {y^2}} \right)$ is harmonic.

Work Step by Step

A function $u\left( {x,y} \right)$ is called harmonic if it satisfies the Laplace equation $\Delta u = 0$: $\Delta u = {u_{xx}} + {u_{yy}} = 0$ (a) We have $u\left( {x,y} \right) = x$. ${u_x} = 1$, ${\ \ \ }$ ${u_{xx}} = 0$ ${u_y} = 0$, ${\ \ \ }$ ${u_{yy}} = 0$ So, $\Delta u = {u_{xx}} + {u_{yy}} = 0$ Hence, the function $u\left( {x,y} \right) = x$ is harmonic. (b) We have $u\left( {x,y} \right) = {{\rm{e}}^x}\cos y$. ${u_x} = {{\rm{e}}^x}\cos y$, ${\ \ \ }$ ${u_{xx}} = {{\rm{e}}^x}\cos y$ ${u_y} = - {{\rm{e}}^x}\sin y$, ${\ \ \ }$ ${u_{yy}} = - {{\rm{e}}^x}\cos y$ So, $\Delta u = {u_{xx}} + {u_{yy}} = 0$ Hence, the function $u\left( {x,y} \right) = {{\rm{e}}^x}\cos y$ is harmonic. (c) We have $u\left( {x,y} \right) = {\tan ^{ - 1}}\frac{y}{x}$. From Section 7.8 on page 371, we have $\frac{d}{{dv}}{\tan ^{ - 1}}v = \frac{1}{{{v^2} + 1}}$ The derivatives with respect to $x$ are ${u_x} = \left( {\frac{1}{{{y^2}/{x^2} + 1}}} \right)\left( { - {x^{ - 2}}y} \right) = \frac{{ - {x^{ - 2}}y}}{{{y^2}/{x^2} + 1}}$ ${u_{xx}} = \frac{{2{x^{ - 3}}y\left( {{y^2}/{x^2} + 1} \right) - \left( { - {x^{ - 2}}y} \right)\left( { - 2{x^{ - 3}}{y^2}} \right)}}{{{{\left( {{y^2}/{x^2} + 1} \right)}^2}}}$ $ = \frac{{2{x^{ - 5}}{y^3} + 2{x^{ - 3}}y - 2{x^{ - 5}}{y^3}}}{{{{\left( {{y^2}/{x^2} + 1} \right)}^2}}}$ $ = \frac{{2y}}{{{x^3}{{\left( {{y^2}/{x^2} + 1} \right)}^2}}}$ The derivatives with respect to $y$ are ${u_y} = \left( {\frac{1}{{{y^2}/{x^2} + 1}}} \right)\left( {1/x} \right) = \frac{{1/x}}{{{y^2}/{x^2} + 1}}$ ${u_{yy}} = \frac{1}{x}\left( { - \frac{1}{{{{\left( {{y^2}/{x^2} + 1} \right)}^2}}}} \right)\frac{{2y}}{{{x^2}}} = - \frac{{2y}}{{{x^3}{{\left( {{y^2}/{x^2} + 1} \right)}^2}}}$ So, $\Delta u = {u_{xx}} + {u_{yy}} = 0$ Hence, the function $u\left( {x,y} \right) = {\tan ^{ - 1}}\frac{y}{x}$ is harmonic. (d) We have $u\left( {x,y} \right) = \ln \left( {{x^2} + {y^2}} \right)$. ${u_x} = \frac{{2x}}{{{x^2} + {y^2}}}$, ${\ \ \ }$ ${u_{xx}} = \frac{{2\left( {{x^2} + {y^2}} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} = \frac{{ - 2{x^2} + 2{y^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ ${u_y} = \frac{{2y}}{{{x^2} + {y^2}}}$, ${\ \ \ }$ ${u_{yy}} = \frac{{2\left( {{x^2} + {y^2}} \right) - 2y\left( {2y} \right)}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} = \frac{{2{x^2} - 2{y^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}}$ So, $\Delta u = {u_{xx}} + {u_{yy}} = 0$ Hence, the function $u\left( {x,y} \right) = \ln \left( {{x^2} + {y^2}} \right)$ is harmonic.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.