Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 720: 5

Answer

$\mathop {\lim }\limits_{h \to 0} \frac{{{\bf{r}}\left( {t + h} \right) - {\bf{r}}\left( t \right)}}{h} = \left( { - {t^{ - 2}},\cos t,0} \right)$

Work Step by Step

By definition, the derivative of ${\bf{r}}\left( t \right)$ as the limit of the difference quotient is ${\rm{r}}'\left( t \right) = \frac{d}{{dt}}{\bf{r}}\left( t \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{\bf{r}}\left( {t + h} \right) - {\bf{r}}\left( t \right)}}{h}$ By Theorem 2, vector-valued derivatives are computed component-wise, therefore ${\rm{r}}'\left( t \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{\bf{r}}\left( {t + h} \right) - {\bf{r}}\left( t \right)}}{h} = \left( {x'\left( t \right),y'\left( t \right),z'\left( t \right)} \right)$ We have ${\bf{r}}\left( t \right) = \left( {{t^{ - 1}},\sin t,4} \right)$. So, the coordinate functions are $x\left( t \right) = {t^{ - 1}}$, ${\ \ }$ $y\left( t \right) = \sin t$, ${\ \ }$ $z\left( t \right) = 4$ Thus, $\mathop {\lim }\limits_{h \to 0} \frac{{{\bf{r}}\left( {t + h} \right) - {\bf{r}}\left( t \right)}}{h} = \left( {x'\left( t \right),y'\left( t \right),z'\left( t \right)} \right)$ $\mathop {\lim }\limits_{h \to 0} \frac{{{\bf{r}}\left( {t + h} \right) - {\bf{r}}\left( t \right)}}{h} = \left( { - {t^{ - 2}},\cos t,0} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.