Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 720: 49


\begin{align} r(t)& = \left\langle \frac{1}{3} t^3-\frac{1}{3}, \frac{5}{2} t^2-\frac{3}{2},t+1 \right\rangle . \end{align}

Work Step by Step

By integration, we have \begin{align} r(t)& =\int r'(t) dt\\ & =\int \left\langle t^2,5t,1 \right\rangle dt\\& = \left\langle \frac{1}{3} t^3+c_1, \frac{5}{2} t^2+c_2,t+c_3\right\rangle . \end{align} By the condition $r(1)=\lt 0,1,2\gt$, we get $$-\frac{1}{3}=c_1, \quad -\frac{3}{2}=c_2, \quad 1=c_3$$ Hence, we have \begin{align} r(t)& = \left\langle \frac{1}{3} t^3-\frac{1}{3}, \frac{5}{2} t^2-\frac{3}{2},t+1 \right\rangle . \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.