Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 667: 71

Answer

Using the trigonometric identity: $\cos \left( {\theta - \psi } \right) = \cos \theta \cos \psi + \sin \theta \sin \psi $, we obtain ${{\bf{e}}_\theta }\cdot{{\bf{e}}_\psi } = \cos \left( {\theta - \psi } \right)$

Work Step by Step

For angle $\theta$, we have ${{\bf{e}}_\theta } = \left( {\cos \theta ,\sin \theta } \right)$. And for angle $\psi$, we have ${{\bf{e}}_\psi } = \left( {\cos \psi ,\sin \psi } \right)$. Using the definition of dot product, we get ${{\bf{e}}_\theta }\cdot{{\bf{e}}_\psi } = \left( {\cos \theta ,\sin \theta } \right)\cdot\left( {\cos \psi ,\sin \psi } \right)$ ${{\bf{e}}_\theta }\cdot{{\bf{e}}_\psi } = \cos \theta \cos \psi + \sin \theta \sin \psi $ From trigonometry, we have $\cos \left( {\theta - \psi } \right) = \cos \theta \cos \psi + \sin \theta \sin \psi $. Therefore, ${{\bf{e}}_\theta }\cdot{{\bf{e}}_\psi } = \cos \left( {\theta - \psi } \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.