Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 667: 57



Work Step by Step

Projection of $\textbf{u}$ along $\textbf{v}=\textbf{u}_{||\textbf{v}}$$=(\frac{\textbf{u}\cdot\textbf{v}}{||\textbf{v}||^{2}})\textbf{v}$ $\textbf{u}\cdot\textbf{v}=(5\textbf{i}+7\textbf{j}-4\textbf{k})\cdot \textbf{k}=5\times0+7\times0+(-4\times1)=-4$ $||\textbf{v}||^{2}=(\sqrt {0^{2}+0^{2}+1^{2}})^{2}=1$ Then, $\textbf{u}_{||\textbf{v}}=(-\frac{4}{1})\,\textbf{k}=-4\textbf{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.