Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.7 Exercises - Page 566: 93

Answer

$$c = \frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sin x,{\text{ }}g\left( x \right) = \cos x{\text{ }}\underbrace {\left[ {0,\pi /2} \right]}_{\left[ {a,b} \right]} \cr & {\text{Differentiate both functions}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\sin x} \right] = \cos x \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {\cos x} \right] = - \sin x \cr & {\text{Apply the Extended Mean Value Theorem}} \cr & \frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( b \right) - f\left( a \right)}}{{g\left( b \right) - g\left( a \right)}} \cr & {\text{,then}} \cr & \frac{{\cos c}}{{ - \sin c}} = \frac{{\sin \left( {\pi /2} \right) - \sin \left( 0 \right)}}{{\cos \left( {\pi /2} \right) - \cos \left( 0 \right)}} \cr & {\text{Simplifying}} \cr & - \cot c = \frac{1}{{ - 1}} \cr & \cot c = 1 \cr & {\text{For the interval }}\left[ {0,\frac{\pi }{2}} \right] \cr & c = \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.