Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.7 Exercises - Page 566: 87

Answer

$$32t + {v_0}$$

Work Step by Step

$$\eqalign{ & v = \frac{{32}}{k}\left( {1 - {e^{ - kt}} + \frac{{{v_0}k{e^{ - kt}}}}{{32}}} \right) \cr & {\text{Rewrite the function}} \cr & v = \frac{{32\left( {1 - {e^{ - kt}} + \frac{{{v_0}k{e^{ - kt}}}}{{32}}} \right)}}{k} \cr & v = \frac{{32 - 32{e^{ - kt}} + {v_0}k{e^{ - kt}}}}{k} \cr & v = \frac{{32\left( {1 - {e^{ - kt}}} \right)}}{k} + {v_0}{e^{ - kt}} \cr & k{\text{ is approaching zero, then}} \cr & \mathop {\lim }\limits_{k \to 0} v = \mathop {\lim }\limits_{k \to 0} \frac{{32\left( {1 - {e^{ - kt}}} \right)}}{k} + \mathop {\lim }\limits_{k \to 0} {v_0}{e^{ - kt}} \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{k \to 0} v = \mathop {\lim }\limits_{k \to 0} \frac{{32\left( {1 - {e^{ - 0}}} \right)}}{0} + {v_0}\left( 0 \right){e^{ - 0t}} \cr & {\text{Use L'Hopital's Rule}} \cr & = \mathop {\lim }\limits_{k \to 0} \frac{{\frac{d}{{dk}}\left[ {32\left( {1 - {e^{ - kt}}} \right)} \right]}}{{\frac{d}{{dk}}\left[ k \right]}} + \mathop {\lim }\limits_{k \to 0} {v_0}{e^{ - kt}} \cr & = \mathop {\lim }\limits_{k \to 0} \frac{{32\left( {t{e^{ - kt}}} \right)}}{1} + \mathop {\lim }\limits_{k \to 0} {v_0}{e^{ - kt}} \cr & = \mathop {\lim }\limits_{k \to 0} 32\left( {t{e^{ - kt}}} \right) + \mathop {\lim }\limits_{k \to 0} {v_0}{e^{ - kt}} \cr & {\text{Evaluate the limit when }}k \to 0 \cr & = 32\left( {t{e^{ - \left( 0 \right)t}}} \right) + {v_0}{e^{ - \left( 0 \right)t}} \cr & = 32\left( t \right) + {v_0}\left( 1 \right) \cr & = 32t + {v_0} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.